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Heavy ion physicists found the perfect liquid! our field redefined by this
Revived interest in relativistic fluid dynamics, developed in 1960-1980s by
general relativists and astrophysicists!



Glauber simulation

Fourier transform

v

ε

n

n

dN

pTdpTdydϕ
=

dN

pTdpTdy
[1 + 2vn(pT , y) cos (n (ϕ− ϕ0 (n, pT , y)))]

Given reasonable estimate of initial conditions Fits ideal hydro ,
fitted upper limit on viscosity low Spurned a lot of theoretical and
numerical/phenomenological development of relativistic hydrodynamics.



determined by density

gradient (shape)

A "dust"

Particles ignore each

other, their path

is independent of

initial shape

Nucleus

A "fluid"

Nucleus

Particles continuously

interact.  Expansion

dN

d3p
=

dN

pTdpTdy
[1 + 2vn(pT , y) cos (n (ϕ− ϕ0))]

vn|hydro = ⟨Multipole⟩volume
vn|MC,exp ∼ ⟨cosnϕ⟩ ∼ c∞

Not just local angular momentum or microscopic correlations:
ZDC/Spectators, correlations survive large rapdity separations ”True

Collectivity” Same vn appears in ∀ n-particle correlations ,
〈
dN
dϕ1

dN
dϕ2

...
〉



But then LHC switched on and we got a surprise and a conceptual challenge!

CMS  1606.06198

1606.06198 (CMS) : When you consider geometry differences and multi-
particle cumulants (remove momentum conservation), hydro with O (20)
particles ”just as collective” as for 1000. Fluctuations “irrelevant“ even
when they dominate! 20205:o cumulants ≥ 12, Nch ∼ 10



Hydrodynamics in small systems: “hydrodynamization”/”fake equilibrium”?

A lot more work in both AdS/CFT and transport theory about
”hydrodynamization”/”Hydrodynamic attractors”

Kurkela et al
1907.08101.

.

Fluid-like systems far from equilibrium (large gradients )! Usually from 1D
solution of Boltzmann and AdS/CFT EoMs! “hydrodynamics converges
even at large gradients with no thermal equilibrium”
But the issue is not big gradients but small Ndof ! No Molecular chaos/large
Nc , Ensemble averaging! , ⟨F ({xi} , t)⟩ ̸= F ({⟨xi⟩} , t)



Hydrodynamics: an ”effective theory” of averages ⟨...⟩ and thermalization

⟨Tµν⟩ = (e+ P (e))uµuν + P (e)gµν +Πµν , ⟨Jµ⟩ = ρuµ + qµ

At rest w.r.t. uµ ⟨Tµν⟩ = Diag (e(p, µ), p, p, p) , ⟨Jµ⟩ =
(
ρ(p, µ), 0⃗

)
Makes sysem solvable just from conservation laws and EoS:

∂µ ⟨Tµν⟩ = ∂µ ⟨Jµ⟩ = 0, p = p(e, µ), ρ = ρ(e, µ)

Relaxational equation for Πµν (entropy Ts = Πµν∂
µβν ,and ∂µ(su

µ) ≥ 0 )

D (τπ, T )Πµν+Πµν+O
(
Dn≥2,Πn≥2, Tn≥2, un≥2

)
= η×O (∂u, ∂T )+O

(
∂n>2

)
(Navier Stokes τπ → 0 acausal Πµν as a DoF ”regularization”)

A series whose ”small parameter” K ∼ lmicro
lmacro

∼ η
sT∇u ∼ τΠ∇u and the

transport coefficients calculable from asymptotic correlators (Kubo)



Non-relativistic version still considered beautiful and profound, but with
relativity... Issues with causality and diffusion give complications

uµ ambiguus many definitions:Landau uµ ∝ sµ Eckart uµ ∝ Jµ BDNK:
No relaxational DoF, Πµν ∝ ∂u Price: complicated anisotropic uµ(Tµν)
We think flow is ”clear”, so this is a bit strange . choices supposed to
be field redefinitions but give slightly different dynamics
Geroch,Lindblom,...: when “corrections small“ all theories good, when
large none good. But no rigorous understanding of this!

Πµν ambiguus can even be eliminated as a DOF (∼ ∂u by carefully
choosing uµ (BDNK)) Is it a physical quantity? An observable?

Entropy is ambiguus it’s definition depends on the definitions above. Yet
from statistical mechanics , as long as microstates are local, it should
not be ambiguus! of course entropy related to fluctuations



Fluctuations...
〈
(∆Tµν)

2
〉
Is not the same as ⟨Tµν⟩ − ⟨Tµν⟩eq

• One can define linearly, whith a Langevin-like fluctuation-dissipation
relation but contradicts experiment!

CMS  1606.06198

• Exact theory strongly depends on uµ convention! Also on
pseudogauge! but if field redefinition, does ”everything” fluctuate?
What if fluctuation of uµ, T,Πµν leave Tµν invariant?



More concretely

A theorist will say that fluctuations of e.g. δΠµν, δf(x, p) produce
”non-hydrodynamic modes”,”stochastic transport coefficients”,”long-
time tails”,... , sensitive to underlying theries, and hydrodynamics is
easy to break down to a non-universal dynamics.

An experimentalist measures neither Πµν nor f but rather, e.g.

dN

dypTdpTdϕ
≡ dN

dypTdpT
[1 + 2vn(pT , y) cos (n (ϕ− ϕ0n))]

i.e. gradients of Tµν,entropy : vn ≡ ⟨cos (n (ϕ− ϕ0))⟩
Most theorists treat it as an average, but This is a cumulant of O (∞)
so sensitive to non-hydrodynamic modes. Yet experiment finds hydro
everywhere they look! Can your non-hydro mode be my fluctuating
sound-wave? Can we tell,in principle?



Deriving Hydro limk→0
1
kIm

∫
d3xeikx [Txy(0), Txy(x)] → η∇u≪ Ts

QFT transport coefficients plagued by divergences, need truncation
Schwinger-Keldysh/Kubo asymptotic correlators “do not commute“ with
soft thermal fluctuations Moore/Ghiglieri/...

Boltzmann equation Sequential scattering and Molecular chaos. 1st
term in series (convergent?), Lose microscopic correlations

AdS/CFT strong coupling and large Nc, also lose microscopic correlations

Molecular dynamics keeps microscopic correlations, lose Lorentz
invariance (in practice not a problem unless number-changing processes)

Basic problem withcorrelations/fluctuations on scale of gradients!
Ambiguity in flow,Πµν comes from here!



In brief most microscopic approaches to EFT hydrodynamics assume that

lmicro ≪ lmfp ≪ Lmacro , lmfp ∼ η/(sT ) , lmicro ∼ n
−1/3
dof

Most work around second inequality , but first inequality crucial for theories

behind hydro Boltzmann defined in the Grad limit (n
2/3
dof → ∞, σ → 0

),AdS/CFT the ‘t Hooft limit N2
c → ∞, gYM → 0 But both falsified by

small systems hydro! Most attractor/hydrodynamization/... calculations
affected! Issue is not gradients but Ndof breaking fluctuation/dissipation!

CMS  1606.06198



Not just in heavy ions

Brandstetter et al

2308.09699

The

Brazil

nut effect

Empirically, strongly coupled systems with enough thermal energy seem to
be ”fluid” even with a small number of DoFs. EFT does not explain this!
The role of fluctuations in hydrodynamics, and of the exact relation of
statistical physics and hydrodynamics, are still ambiguous and this is related
to experimental puzzles How many DoFs make a fluid?



What all this converges to...

Goodstein

of 
matter"

"States
Danger,foundations of

stat.mech. ahead!

(Poncaire,Khinchin,...)

Is that while hydrdoynamics is based on statistical mechanics the two do
not work together at a deep level!



A final issue: Entropy current not clearly connected to energy-momentum
current, need microscopic theory to ”select good EFT” (2nd law)

System I

"macro"

k<

k>

"micro"

System II

Λ

Λ

Kolmogorov

cascade

regime

At best related to stability (sound waves don’t explode) and causality (sound
waves dw/dk ≤ c) What happens when “mesoscopic DoFs“ (turbulence)
and microscopic Dof of similar order? Stat mech related to chaos



the battle

effectiveness

of stat mech

and the
unreasonable

of the entropies

2 definitions of entropy and both have problems Boltzmannian has
Lokschmidt paradox/molecular chaos ,Gibbsian has ergodicity
Khinchin‘s “failed“ PhD to justify stat mech, Hilbert‘s 6th problem at
most stat mech approximate for some observables (indecomposability!)

They are different apart from certain limits (equilibrium, no-interaction)
Gibbs more general wrt systems but not defined away from equilibrium

Frequentist vs Bayesian One is more Boltzmannian, theother Gibbsian

Relativity T → βµ → time dependence! What’s equilibrium?



QM to rescue? Berry/Bohigas/Eigenstate thermalization

|φ><ψ|

En>>1 of quantum systems whose classical correspondent is chaotic have
density matrices that look like pseudo-random. If off-diagonal elements
oscillate fast or observables simple, indistinguishable from MCE!

Unlike Schwinger-Keldysh,Kubo,Boltzmann... fluctuations need not be
small here but



....

vs.
:

But need to coarse-grain, impose causality, and build hydro-like EFT out of
this. could be very different from usual EFT expansion!
Thermodynamic limit relativistically ambiguus: “large volumes“ can
fluctuate into non-equilibrium sub-volumes that need ”long times” to re-
equilibrate . Grad limit/large Nc hides this!



Let’s look at this ambiguity a bit deeper: Lagrangian and Eulerian
hydrodynamics Hydro as fields: (Nicolis et al,1011.6396 (JHEP))
Continuus mechanics (fluids, solids, jellies,...) is written in terms of 3-
coordinates ϕI(x

µ), I = 1...3 of the position of a fluid cell originally at
ϕI(t = 0, xi), I = 1...3 . (Lagrangian hydro . NB: no conserved charges)
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φ

1
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φ

φ
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φ
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The system is a Fluid if it’s Lagrangian obeys some symmetries (Ideal
hydrodynamics ↔ Isotropy in comoving frame) Excitations (Sound waves,
vortices etc) can be thought of as ”Goldstone bosons”



Translation invariance at Lagrangian level ↔ Lagrangian is a function of
BIJ = ∂µϕ

I∂µϕJ Now we have a “continuus material”!

Homogeneity/Isotropy the Lagrangian is a function of B =
detBIJ , diagBIJ fluid cell interior has no ”preferred” direction ⇐ SO(3)

Invariance under Volume-preserving diffeomorphisms means the Lagrangian
must be a function of B In all fluids a cell can be infinitesimally deformed

ρ = F (B) , p = F (B)−2F ′(B)B , uµ =
1

6
√
B
ϵµαβγϵIJK ∂αϕ

I∂βϕ
J∂γϕ

K .

usual hydro energy-momentum tensor follows!
√
B is identified with the

entropy,
√
BdF (B)

dB with microscopic temperature. uµ fixed by uµ∂µϕ
∀I = 0



Conserved charges (Dubovsky et al, 1107.0731(PRD))
Within Lagrangian field theory a scalar chemical potential is added by
adding a U(1) symmetry to system.

ϕI → ϕIe
iα , L(ϕI, α) = L(ϕI, α+ y) , Jµ =

dL

d∂µα

generally flow of b and of J not in same direction. Can impose a well-defined
uµ by adding chemical shift symmetry

L(ϕI, α) = L(ϕI, α+ y(ϕI)) → L = L (b, y = uµ∂
µα)

A comparison with the usual thermodynamics gives us

µ = y , n = dF/dy

obviously can generalize to more complicated groups



This looks a bit like GR and this is not a coincidence!

4D local Lorentz invariance becomes local SO(3) invariance

Vierbein gµν = ηαβeαµe
β
ν is

∂x
comoving
I
∂xµ

= ∂µϕI (with Gauge phase for µ )

Entropy ∼
√
b , diffeomorphism invariant

Killing vector becomes uµ

L ∼
√
−g (Λ +R+ ...) becomes L ∼ F (B) ≡ f(

√
−g) Just cosmological

constant, expanding fluid ≡ dS space

Very nice... but the ambiguities beyond ideal hydro generally break this .
Who cares? Should beyond idel hydrodynamics have this general covariance?



The poor people’s quantum gravity: How can fluctuations and dissipation
keep hydrodynamic’s diffeomorphism invariance? Perhaps has a role to
answer how come fluctuation/dissipation experimentally breaks down and
fluids exist for 20 particles!
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First step: Lagrangian hydrodynamics very elegant, but where is the
connection to local thermalization? Statistical mechanics? Transport?
Hint from D.T.Son: it is the largest group of diffeomorphisms
where time plays no role!



Where does statistical mechanics come from? Ergodicity

Conservation

law bound

Classical evolution via Hamilton’s equations

ẋ =
∂H

∂p
, ṗ = −∂H

∂x
, Ȯ = {O,H}

“Chaos”,conservation laws→ phase space more “fractal”, recurring



“After some time”, for any observable ergodic limit applies

∫ (large) T

0

Ȯ(p, q)dt =

∫
P (O(p, q))dqdp

where P (...) probability independent of time. This probability can only be
given by conservation laws

P (O) =
(
∑
iOi) δ

4 (
∑
iP

µ
i − Pµ) δ (

∑
iQi −Q)

N
, N =

∫
P (O)dO = 1

this is the microcanonicanal ensemble. In thermodynamic limit

P (O) → δ(O − ⟨O⟩)



Hydrodynamics is “thermodynamics in every cell

∫ (large) T

0

Ȯ(p, q)dt→ ∆ϕ

∆t

where ϕ is some local observable.

∆ϕ

∆t

∣∣∣∣
t−t′=∆

≃ 1

dΩ(Q,E)
×

×
∑

δ4
Pµ,P

µ
macro(t)

δQ,Qmacro(t)δ

 ∞∑
j

pµj − Pµ

 δ

 ∞∑
j

Qj −Q


Problem: This is not relativistically covariant!



Solution: Foliation!

Wσ∼ Ω

−W

t→ Σ0 , xµ → Σµ , ∆ → “smooth′′
∂Σµ
∂Σν

Smooth: Rcurvature of metric change smaller than “cell size” (New lmfp )

∆ϕ

∆Σ0
=

∫
P (ϕ,Σµ)dΣi , Σµ → Σ′

µ ,
∆ϕ

∆Σ′
0

=
∆ϕ

∆Σ0



What kind of effective lagrangian would enforce

∆ϕ

∆Σ0
=

∫
P (ϕ,Σµ)dΣi ,

∆ϕ

∆Σ′
0

=
∆ϕ

∆Σ0

with
P (...) ∼ δ(

∑
i

Pµi − P )δ(
∑
i

Qi −Q)

Now Remember Noether’s theorem!

pµ =

∫
d3ΣνTµν , Tµν =

∂L

∂∂µϕ
∆νϕ−gµνL , ∆νϕ(xµ) = ϕ(xµ+dxν)

Q =

∫
d3Σνjν , jν =

∂L

∂∂µϕ
∆ψϕ , ∆ψϕ = |ϕ(x)|ei(ψ(x)+δψ(x))

momentum generates spatial translations, conserved charges generate
complex rotations!



Space-like foliations decompose

dΣµ = ϵµναβ
∂Σν

∂Φ1

∂Σα

∂Φ2

∂Σβ

∂Φ3
dΦ1dΦ2dΦ3

where the determinant (needed for integrating out δ− functions is only in
the volume part

∂Σ′
µ

∂Σν
= Λνµ det

dΦ′
I

dΦJ
, detΛνµ = 1

Physically, Λνµ moves between the frame dΣµrest = dΦ1dΦ2dΦ3(1, 0⃗)



so lets try
L(ϕ)︸︷︷︸

microscopic DoFs

≃ Leff(Φ1,2,3)

with
∆ϕ

∆Σ0
=

∫
P (ϕ,Σµ)dΣi , P (...) = δ(...)δ(...)

the general covariance requirement of ∆ϕ
∆Σ0

= ∆ϕ
∆Σ′

0
means the invariance of

the RHS
dΩ(dP ′

µ, dQ
′,Σ′

0)

dΩ(dPµ, dQ,Σ0)
=

=
dΣ′

0

dΣ0

∫
daµdψδ

4 (dΣνaα∂
α (δµνL)− dPµ(Σ0)) δ (dΣ

µψ∂µL− dQ(Σ0))∫
da′µdψ

′δ4
(
dΣ′

νa
′
α∂

α (δµνL)− dP ′
µ(Σ

′
0)
)
δ
(
dΣ′

µψ
′∂µL− dQ′(Σ′

0)
)



It is then easy to see,via

δ((f(xi))) =
∑
i

δ(xi − ai)

f ′(xi = ai)︸ ︷︷ ︸
f(ai)=0

, ϕ′I =
∂αΣ

′
I

∂αΣJ
ΦJ , δ4(Σµ) = det

∣∣∣∣∂Σµ∂Σν

∣∣∣∣ δ4(Σ′
µ)

that for general covariance to hold

L(ΦI, ψ) = L(Φ′
I, ψ

′) , det
∂ϕI
∂ϕJ

= 1 , ψ′ = ψ + f(ϕI)

the symmetries of perfect fluid dynamics are equivalent to requiring
the ergodic hypothesys to hold for generally covariant causal spacetime

foliations!!!! Quantum: ∆tmicro−sampling → ρije
i∆tEij and proof similar!



So we have a definition of ideal hydro ,independent of gradients and
amenable to large fluctuations . non-ideal hydro extension?

Generating functionals , not constitutive relations Every cell corresponds
to covariant lnZ , not conserved current metric gµν ↔ ∂Σµ/∂Σ

ν

Close to local equilibrium is not on gradient expansion but the
approximate applicability of fluctuation-dissipation (not the same! )
Refoliations in Σµ → Changes in gµν ↔ reshuffling in interpretation.

Manifestly in terms of probability distributions of observable quantities
Tµν, Jµ,Ωαµν ,Cells defined by full generating functionals,

As in Einstein’s equations covariance → correct form of the EoM
Intrinsically incompatible with Boltzmann equation, needs functionals/autocorrelationsEFT:
∀ terms allowed terms compatible with symmetries i.e. general covariance!



How this helps with small systems Ergodicity/Poncaire cycles meet relativity
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Gibbs entropy+relativity : non-equilibrium → “phase loss” of Poncaire
cycles. one can see a slightly out of equilibrium cell either as a “mismatched
uµ ” (fluctuation) or as lack of equilibrium (dissipation). Microscopic
momentum fluctuations and momentum dissipation locally indistinguishable!

Fluctuations reducible to dΣµ → dΣ′
µ,shift in uµ,Πµν unphysical/”ghost”!



What is a gauge theory,exactly?

Z =

∫
DAµ exp [S[Fµν] ≡

∫
DAµ1DA

µ
2 exp [S[A

µ
1 ]

Aµ1,2 can be separated since physics sensitive to derivatives of lnZ

lnZ = Λ+ lnZG , ZG =

∫
DAµδ (G(Aµ)) exp [S(Aµ)]

Ghosts come from expanding δ(...) term. In KMS condition/Zubarev

Z =

∫
Dϕe−F ,F → dΣνβµT

µν , Gauge : F(βµ,Σµ) → F(β′
µ,Σ

′
µ)

Multiple Tµν(ϕ) → Gauge-like configuration . Related to Phase space
fluctuations of ϕ Small system fluctuations ↔ UV fluctuations in QED?



A generally covariant local equilibrium theory:Ingredients

Partition functions approximately Gaussian the most “ad hoc“
assumption, we do it because it works and hope Gaussians are universal
enough problematic for critical points

The Gravitational ward identity For Gaussians, and only for them it
both enforces general covariange and determines dynamics

Fluctuation-dissipation needed for 2nd law
And needs to be generally covariant for consistency!



The gravitational ward identity (Deser,Boulware, JMP 8 (1967), 1468)

∇W = 0 , W = Gµν,αβ (Σµ,Σ
′
ν)−

1
√
g
δ (Σ′ − Σ)×

×
(
gβµ

〈
T̂αν (x′)

〉
Σ
+ gβν

〈
T̂αµ (x′)

〉
Σ
− gβα

〈
T̂µν (x′)

〉
Σ

)
Gµν,αβ is the propagator for energy-momentum tensor (fluctuation!)
Kubo formulae neglect contact terms by imposing thermostatic background

Fancy name but consequence of energy-momentum Noether current

∂µT
µν + ΓναβT

αβ = 0 ,
〈
Tnµν
〉
=

δn√
−gδgµν(n)

lnZ

Note: deterministic hydro gradient expansion and linearized fluctuations
inherently break this! Ward identity specifies dynamics only for Gaussian



Cumulant expansion: Partition function is Gaussian! lnZ ≃ lnZ|0−

− ∂2 lnZ
∂βµ∂βν

∣∣∣∣
0

ln
∏
Σ(x)

exp

[
−1

2
⟨∆Tµν(Σ(x′))⟩Cµναβ(Σ(x),Σ(x′)) ⟨∆Tαβ(Σ(x))⟩

]

Gaussian lnZ is Solvable, function of diagonalized ⟨Tµν⟩ (e,p) and C
′µναβ

in frame that diagonalizes ⟨Tµν⟩

lnZ(Σ0) ≃

√∏
i

µ2
i

√
C

′αβ
αβ

−1

where

C ′
αβιξ = ΛµνΛαβΛδιΛζξC

µαδζ , ΛµνΛαβ ⟨Tµβ⟩ = Diag(µ1, µ2, µ3, µ4)



If Cαβγν evolved via Ward identiy from initial conditionsmanifestly diffeo
invariant

Qαβ =

∫
dΣµ

∇νC
µναβ +

1√
−g
∑
i

1

λ2i

√
C

′ζδ
ζδ

∇µCαβµν


Physically, “the price” for general covariance is that the propagator is not
a function of the Lagrangian, but evolved deterministically from initial
conditions in an ensemble of field configurations This propagator can then
be used to propagate the ensemble, and vice-versa!
Lesson to make other stochastic theories generally covariant (Gravity)?



Temperature obtainable from covariantization of Maxwell relations

〈
E2
〉
− ⟨E⟩2 ≡ CV T ⇒

(
C

′αβ
αβ

)3/2
=
∂βµ∂βν
∂Σµ∂Σν

C̃
′
αβµν(k) contains EoS and transport coefficients information

η ∼ k−1 lim
k→0

ImC̃
′
xyxy , c2s ∼ k−1 lim

k→0
ImC̃

′
xxxx

τπ ∼ k−2 lim
k→0

Im
d

dk
C̃

′
xyxy CV ∼ max

k
ReC̃

′
xxxx , ....

But we should underline that the full C̃
′
αβµν(k) is a field that evolves from

the initial conditions of an ensemble of configurations of the Tαβ field, not
a functional of the lagrangian alone



General covariance and linear response

’

x

t

Σ
i

Σ
0

Σ

0

i

Σ

’

Different foliations are locally causal, but disagree on causality at distant
regions. Linear response, Schwinger Keldysh,... fluctuation (equal time
correlator) and dissipation (forward correlator) relation complicated but you
“know the background“ . general covariance emerges in limit you do not!



fluctuation-dissipation relation From linear response the Gaussian
propagator earlier,

Tµν(Σ) =

∫
eϵΣ0Gµν,αβ(Σ′

0 − Σ0)δgαβ(Σ
′
0)dΣ0

we can find the time-ordered one〈
T̂αβ

〉
Σ+dΣ

= i

∫
1
√
g
Gµν,αβ(Σ′

0 − Σ0) ⟨T ⟩µν (τ, x)dΣ0

G̃µναβ =
1

2i

(
G̃αβµνT (Σ0, k)

G̃αβµνT (−iϵΣ0, k)
− 1

)
These are Standard fluctuation-dissipation techniques (Forster,Kadanoff,...
) but are they generally covariant



But Can it be Generally covariant? Seemingly no! in dω and because

dV dt→
√
|det [−gµν]|d4x ,

∏
i

λiµiC
′µν
µν ∼ V olume

restored if volume preserving diffeomorphisms invariance

Σµ = (t(x), x⃗) = (t(ϕI), ϕI=1,2,3) , ϕI → ϕ′I(ϕJ) , detIJ∂ϕI/∂ϕ
′
J = 1

hydro EFTs based on Schwinger-Keldysh break this symmetry beyond
ideal limit (Haehl et al,1502.00636,also Grozdanov,GT+Montenegro) ,
which shows role of general covariance . Physically Local equilibrium→
dissipative evolution locally indistinguishable from an isentropic fluctuation.
so symmetries of ideal hydro should remain! flow in ideal limit is defined
as a Killing vector, uµ∂µϕI = 0 Physically, once fluctuations are taken
into account in a generally covariant way, uµ deviation from this is locally
indistinguishable from a fluctuation, encoded in the structure of Cµναβ .



The dynamics (Lattice version)

Start with a lattice with an ensemble {Tµν(xi, t)} at each point of it

Construct ⟨Tµν(xi, t)⟩ and Cµναβ(xi, xj, t, t) from it

Use General covariance and Cµναβ(xi, xi+1, t)

to construct Gαβµν(xi, xi+1, t)

Use linear response on each {Tµν(xi, t)} to get {Tµν(xi, t+∆t)}

Calculate ⟨Tµν(xi, t+∆t)⟩ Use the Ward

identity to get Cµναβ(xi, xi+1, t + ∆t)



The mere fact that thermodynamic quantities can be described via a lnZ
gives rise to the Gibbs-Duhem relation

s = T lnZ = P + e− µn

Enforce invariance under Σµ refoliations, a scalar lnZ

−∆ lnZ = −βνJν∆µ+P i∆βi−∆Σ0β0

∫ P 0

0

c2s(e)de , Pα=0,i=1.3 ≡ TαβdΣ
β

Crooks theorem becomes

P
{
Pµ|τ → Pµ|τ+∆τ

}
P
{
Pµ|τ+∆τ → Pµ|τ

} ∼ exp[lnZ|τ+∆τ−lnZ|τ ] , ∆τ = βµ
∆3Σµ

∆3ϕi=1,2,3

Zubarev statistical operator +Crooks theorem (Work ∼
∫
Tµνd

3Σµβµdτ )



dV

t t

Kubo

Boltzmann
TUR

Crooks fluctuation theorem Relates fluctuations, entropy,work

P (W )/P (−W ) = exp [∆S] , W = TµνdΣ
µβν

reproduces Boltzmann entropy and Kubo for right contours and...



ideal hydro emerges for small fluctuations and vanising viscosity!

lim
∆S→∞

P (W )

P (−W )
= e∆S ≡ δ (dΣµ (su

µ)) = 0 ⇒ nµ∂µ (su
µ) = 0

Singular limit but regularizeable Fluctuation constraint becomes singular
when general covariance determines EoM!

Characteristic volume of volume preserving diffeomorphisms → 0

Viscous corrections break volume-preserving diffeos because fluctuation-
dissipation violated. Any structure of a distribution invisible when it
collapses to a δ-function . Fluctuation and dissipation appear together
in a way satistfying the Ward identity!



The dynamics (Lattice Crooks version)

Start with a lattice with an ensemble {Tµν(xi, t)} at each point of it

Construct ⟨Tµν(xi, t)⟩ and Cµναβ(xi, xj, t, t) from it

Use General covariance via dΣµ|timelike to

dΣµ|spacelike to find Cµναβ(xi, xi+1, t + ∆t, t + ∆t)

Use the Crooks fluctuation theorem and

acceptance/rejection to get {Tµν(xi, t+∆t)}
Calculate ⟨Tµν(xi, t+∆t)⟩ Use the Ward

identity to get Cµναβ(xi, xi+1, t + ∆t)



Those scales again: lmicro︸ ︷︷ ︸
∼s−1/3,n−1/3

≪ lmfp︸︷︷︸
∼η/(sT )

≪ Lmacro
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mean free path

Truncation 

micro
correlations

truncation

ln(Z)
cumulants

Israel-Stewart
Navier-Stokes

coarse-graining

gradients
gradients

holography

Preponderance of “chaotic“ regime could mean general covariant hydro is
both more likely and “closer in dynamics“ to Euler!



When is the system is a good fluid? Usual approach, Kn, we propose ξ

Kn ≡ min
β

(Tµν − Tµν0 ) ∂µβµ
Tαα

∼ η

(e+ p)R
∼ τΠ
R
, ξ ≡ minβ [⟨Tµν − Tµν0 ⟩ ∂µβµ]√

C
′αβ
αβ

Flow ambiguity at most by the possibility to ”choose” the vectorβ

fluctuations some fluctuation-dissipation relation tKn ∼ N−1
dof

Phenomenology breaks this

ξ qualitatively depends in a radically different way from on Ndof : As
Ndof → ∞ Gibbs-Duhem → ξ ∼ Kn , but away from this limit Kn is
bound to increase with the number of DoFs while ξ could well decrease.
For small strongly coupled systems ξ ≪ 1?



Hydrodynamics is universal I: local rather than global equilibrium!

???

Global equilibrium , defined as Max [⟨ln ρ̂⟩]βµ,µ,... in presence of

forces (rotations, fields,acceleration) ill defined if ∇δµ ≃ 1/R, 1/T
since hydrodynamic turbulence, statistical fluctuations talk (“unstable”
equilibrium is not in equilibrium!). local equilibrium well-defined!, solid
basis of an EFT. This ambiguity, reflecting the tension of thermodynamic
limit and relativity , is due to entropy in Global equilibrium being
Boltzmannian (“micro” Dofs) and not Gibbsian (covariantly “coarse-
grained” Dofs,fluctuation-generated soundwaves,...)



Hydrodynamics is universal II: Solids,jellies etc and local equilibrium

Khinchin shoed ergodicity impossible unless phase space indecomposable,
something problematic for systems with broken volume preserving diffeos.
Anything except fluids has a global equilibrium but no EFT built around
local equilibrium stable against local fluctuations. A complicated way of
saying non-fluids are brittle (long correlations determine dynamics)



Hydrodynamics is universal III: Hydrodynamic stability and causality

Stability? It’s all about those scales

lmicro ≪ lmfp ≪ Lmacro

When statistical mechanics applies, one expects dynamics to be absolutely
chaotic near the first scale,where Poincaire cycles occur and partially
chaotic in the middle of the chain of inequalities where turbulence occurs

Local causality? criterion must be changed to∫
dxeikx ⟨uµ(x)uν(x′)⟩ →

∫
dxeikxT [Tµν(x), Tαβ(x

′)]

fluctuations or signals between unobservables don’t have to be causal!



Onto spin hydrodynamics?

Polarization by vorticity

in heavy ion collisions

NATURE

August 2017

STAR
collaboration

1701.06657

Could give new talk about this, but will mention hydro with spin not
developed and a lot of conceptual debates. does hydrodynamics with spin
(and fluctuations) depend on the pseudo-gauge? entropy current seems to!



What is a pseudogauge?

Mathematically (S. Jeon, 2310.11269 ) Let Φαβγ be fully antisymmetric

Tµν → T ′
µν+

1

2
∂λ
(
Φλ,µν +Φµ,νλ +Φν,µλ

)
, ∂µTµν = ∂µT ′

µν = 0

Can moves around spin and angular momentum,shows the ambiguity of
localized currents

Physically (T.Brauner, 1910.12224) a microscopic field redefinition with
a non-inertial transformation preserving the action

xµ → xµ + ϵζµ(x) , ψa → ψa + ϵψ′
a , S → S

So in current approach lnZ derivatives (dynamics and observables)
exactly pseudo-gauge invariant! Work in progress, need Ward identity
with torsion



What happens in non relativistic limit?

2401.13881 2010.13089

• No unique Lorentz→ Galileo expansion, need extra assumptions. I think

– cs → ∞ ⇒ incompressible matter
– This way Local hydro Lorentz invariance becomes the Galileo group
– Spontaneus stochasticity conjecture 2401.13881
– Hidden spatiotemporal symmetries in turbulence 2010.13089

• But regarding ergodic hypotheses, what is the Stat.mech of
incompressible matter? Probably singular



Fluctuations in non-ideal hydrodynamics not well understood

Intimately related to entropy current, double counting of DoFs
Could alter fluctuation-dissipation expectation, ”fluctuations help
dissipate”, in analogy to Gauge theory

Approximate local equilibrium not understood in Gibbsian picture
Our proposal: applicability of fluctuation-dissipation

Need a covariant description purely in terms of observable quantities
Ergodicity works in ideal hydro, Crooks theorem/K-K beyond it?

Could be relevant for hydro in small systems

A non-relativistic limit? (Brazil nut effect) all depends on time
dilation,so a bit at a loss!



SPARE SLIDES



Fluctuations... what is fluctuating?
One can always decompose Tµν into “near-equilibrium” e, p, n, uµ and non-
equilibrium “rest” Πµν, Jµ , its an algebraic operation, provided you have a
matching condiction eg

Tµνu
µ = euν , Tµν = (e+ p(e))uµuν + p(e)gµν +Πµν

At deterministic level this is good but consider an ensemble T̂µν...

Tµν → T̂µν so e, p, n→ ê, p̂, n̂ , ensemble elements which fluctuate event-by
event. uµ → βµ , Lagrange multiplier for momentum. Mixing these mixes
apples and Legendre-transformed apples, lose all connection to stat-mech!

It would mean transversality condition uµΠ
µν = 0 applies event-by-event

rather than on average, as expected from statistical mechanics .



Anisotropy, transport and statistical mechanics Anisotropic hydrodynamics
justified within transport via improved relaxation time

f(x, p) = feq (1 + ϕ(x, p)) → feq (1 + ϕ(x, p) + aµ(x)p
µ)

Problem: Boltzmann is an approximation where f(x, p) represents an infinity
of particles . Fundamentally, hydrodynamics comes from Kubo

η = lim
k→0

1

k
Im

∫
dx
〈
T̂xy(x)T̂xy(y)

〉
exp [ik(x− y)]

Usually semiclassical approximation yields Boltzmann equation than
relaxation time, which guarantees the Kinchin condition to be fulfilled.
Above demonstration reliable only in that limit



The basic problem with f(x,p)

?=

Let’s solve the simplest transport equation possible: Free particles

pµ

m
∂µf(x, p) = 0 → f(x, p) = f

(
x0 +

p

m
t, p
)

obvious solution is just to propagate
What is weird is that ”hydro-like” solution possible too (eg vortices)!

f(x, p) ∼ exp [−βµpµ] , ∂µβν + ∂νβµ = 0

But obviously unphysical, no force! What’s up?



=+ + 8+...

...

This paradox is resolved by remembering that f(x, p) is defined in an
ensemble average limit where the number of particles is not just “large” but
uncountable . curvature from continuity!

BUt this suggests Boltzmann equation disconnected from Ndof ≤ ∞ !

In Anisotropic hydro βµ not Killing vector . So no reason to assume
ensemble average/thermal fluctuations sampled fairly close to equilibrium!
Boltzmann equilibrium and Gibbs-type thermal equilibrium could be very
different. lets work with the latter



Vlasov and Boltzmann in a classical world
Villani , https://www.youtube.com/watch?v=ZRPT1Hzze44

Vlasov equation contains all classical correlations, instability-ridden,
“filaments”, cascade in scales.
NDOF → ∞ invalidates KAM theorem stability

Boltzmann equation “Semi-Classical UV-completion” ov Vlasov
equation, first term in BBGK hyerarchy, written in terms of Wigner
functions.

Infinitely unstable jerks on infinitely small scales Random scattering

But if number of particles N ≪ ∞ Correlations important! .

https://www.youtube.com/watch?v=ZRPT1Hzze44


Boltzmann equation,BBGKY and limits

n

h

.....  (divergence)

Boltzmann

BBGKY

expansion

Kadanoff

Baym

Wigner function

....

Mrowczynski/

Mullerhydro

Fluctuating

<f (x,p)>

<f (x,p)>
1−

n

Boltzmann equation emerges as a double limit from microscopic correlations,
h̄→ 0 Relaxing the latter limit would destroy statistical independence CHSH
relations , so probably not relevant (phases ”chaotic”). But fluctuating
hydro ”non-perturbative” in correlations



Finite number of particles: f(x, p) not a function but a functional
(F(f(x, p)) →︸︷︷︸

Boltzmann

δ (f ′ − f(x, p)) ), incorporating continuum of

functions and all correlations. Perhaps solvable!

pµ

Λ

∂

∂xµ
f(x, p) =

〈
Ĉ[W̃ (f̃1, f̃2)]− g

pµ

Λ
F̂µν[f̃1, f̃2]

δ

δf̃1,2
W̃
(
f̃1, f̃2

)
︸ ︷︷ ︸

How many A−B=0?

〉

Wigner functional to O
(
h0
)
. What is the effect? If only Boltzmann term

not much!



If Both Vlasov and Boltzmann terms, redundancy-ridden!

f(p)

f(x)

δ

δ

Boltzmann-Vlasov=0

f(x)δ f(p) or δ

One can deform f(x, p) by δf(x) or δf(p) so that Ĉ − Ŵ cancels. In
ensemble average deformation makes no sense, but away from it it does!



Discretize x, p→ random matrix problem!

˙fij −
[
p⃗k
Λ
.∆k

]
fij =

〈
Ω̂
〉

Ω̂ ∼ d
[
f ′i1j1

] [
Wi1j1ij

(
Cjj1

(
fijf

′
i1j1

− fij1f
′
i1j

)
− Vµii1fijf

′
i1j1

∆fij
∆pµ

)]

• Theorems of random matrix theory can be used to prove limit very
different from RTA!

• can be tested numerically with a lattice Boltzmann algorithm

• connects to Zubarev Gibbs-Duhem relation
lnZ = ln

[∏N
i=1 exp

(
∆3Σµ (βνT

µν − µiJ
µ)
)]


