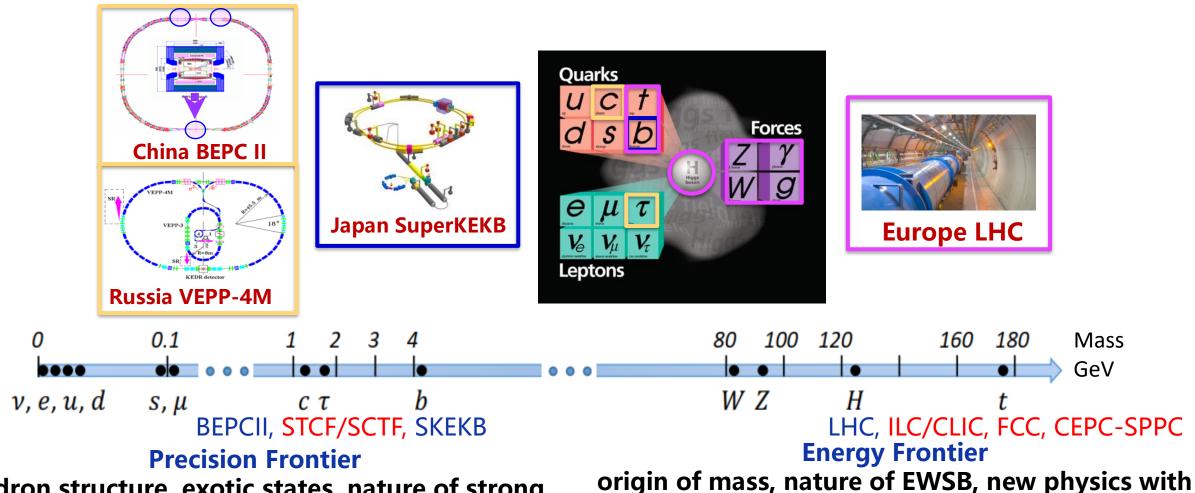


超级陶粱装置

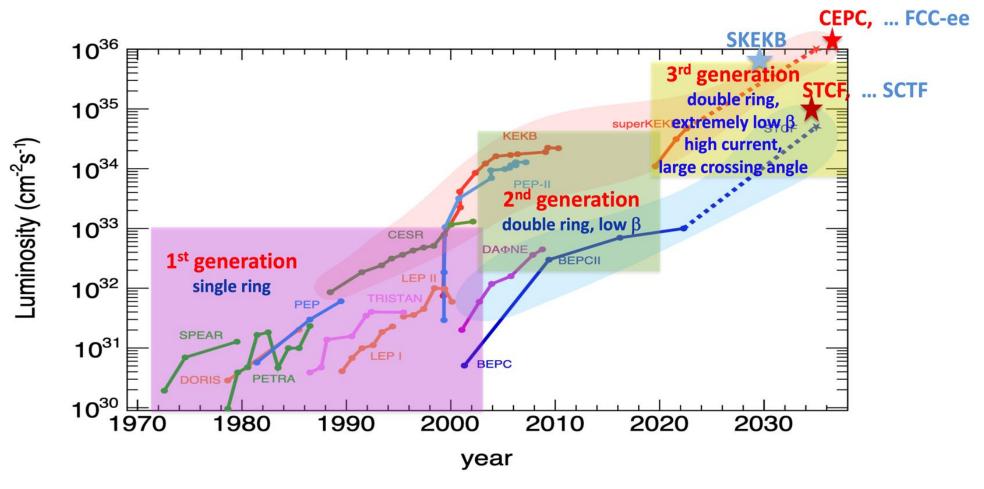

Super Tau-Charm Facility

刘建北 (Jianbei Liu)

University of Science and Technology of China

IOPP Colloquium, CCNU, Wuhan Nov. 11, 2025

Particle Physics with Colliders



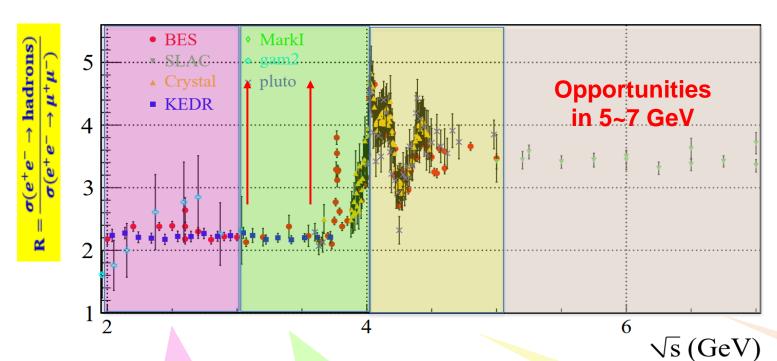
interaction, flavor physics & CPV ...

origin of mass, nature of EWSB, new physics with Higgs, SUSY, Dark matter, universe evolution ...

In-depth exploration at both precision and energy frontiers is called for more than ever in the post Higgs era

Evolution of e+e- Colliders

 e+e- colliders are entering the era of 3rd generation, playing pivotal roles at both frontiers

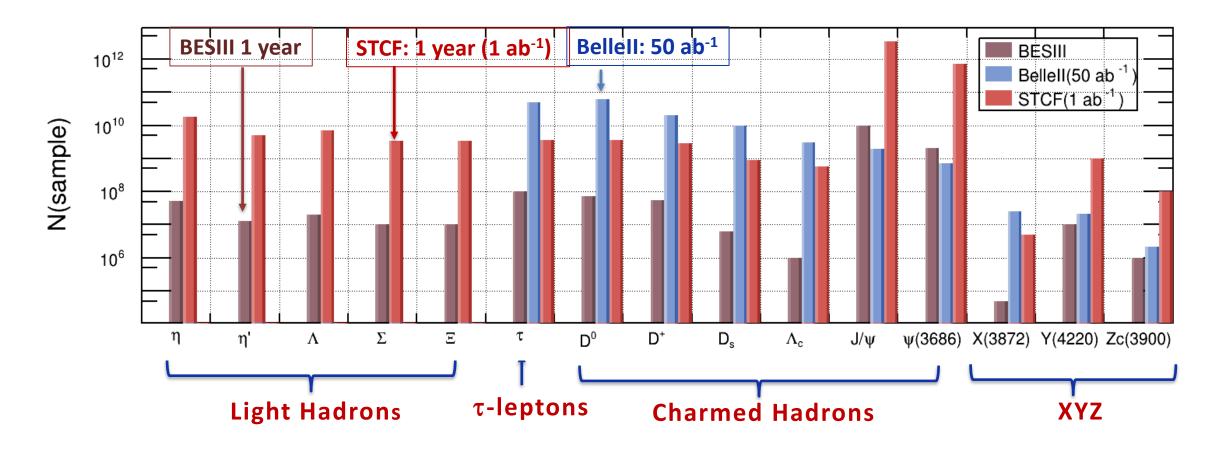

Super Tau-Charm Facility (STCF)

STCF, a flagship collider at the precision frontier, can produce a large number of clean tau leptons and hadrons, allowing full exploration of the unique physics potential in the tau-charm energy region: QCD, hadron physics, flavor physics ...

Building upon China's great success and well-established international position in tau-charm physics (Beijing Electron-Positron Collider / BEPC)

Unique Tau-Charm Energy Region

- Transition region between perturbative and non-perturbative QCD
- Pair production of hadrons and τ leptons at threshold and/or with quantum correlation
- Abundant resonances
- Large production X-sec for charmonium(-like) states and exotic states


- Hadron form factors
- *Y*(2170) resonance
- Mutltiquark states with s quark
- R value / g-2 related

- Light hadron spectroscopy
- Gluonic and exotic states
- Processes of LFV and CPV
- Rare and forbidden decays
- Physics with τ lepton

- XYZ particles
- Physics with D mesons
- f_D and f_{D_S}
- $D^0 \overline{D}^0$ mixing
- Charm baryons

- Complete *XYZ* family
- Hidden-charm pentaquarks
- Search for di-charmonium states
- More charmed baryons
- Hadron fragmentation

STCF: A Super Factory of Various Particles

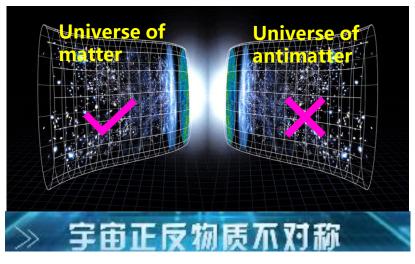
• STCF is not only a super τ -charm factory, but also a super factory of XYZ, hyperons and light hadrons to unravel the mystery of how quarks form matter and study the symmetries of fundamental interactions with unprecedented precision

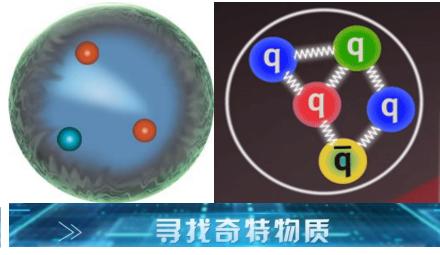
Scientific Questions and Objectives

Symmetry breaking in fundamental interactions

Origin of matter-antimatter imbalance

Discovering CP violation in hyperons


Mystery of color confinement in particle physics


Examining the structure of nucleons

Exploring how quarks and gluons form hadrons

Precision measurement of fundamental parameters
Examining the Standard
Model

Searching for new physics

STCF Project Development

Super Charm-tau Factory

Proposed at "Workshop for acc. based high energy physics development strategy"

只写得心就求的明全点中。 电设度 "十五二" 题例识够立领 辦位、(表現者的、副問題性東東京原於係及中記) 2. 由导作用語、食用語方面的用程與受的方形一种語 证、大分成性为行动力积累、此一分分找与分外的作用发生 按注度存货债务检查证证证,《水塘单位、中科试会院证案 3. 专些作物有规模的,必然而相关的实际层面内面的 产品大幅的大幅等的证券工程的证券联系统, 建海绵体 章是一507年在扩张性,成成下及技术完全应用等用化一 心。(中國单位,一种似中以由然外外研究以)

Hefei Comprehensive National Science and Technology center, STCF listed as a big science facility to be promoted

STCF STCF STCF Conceptual Design Report Conceptual Design Report Concentual Design R

Conceptual Design report Released the CDR for the physics and Detector, and the pre-CDR for accelerator

2011

2015

2017 2018 2021

2022.4

香山科学会议简报 -7GeV 高亮度正负电子加盟器上的

物理、应用及其关键技术 有山村中東北第503次中东州治金 医心病病 计工作公司共同工作概要人就要的证明,是对其一种企力 A.R.A. 海 1966 医水黄霉菌病 1 m 中的基础,在成为产品的原理的

Fragrant Hills Science Forum Demonstrated its importance and necessity, urging to lauch fesibility

study and R&D

中国科学技术大学"双一法"重点建设项目 "超级陶-梨(T-C)装置预先研究"论证意见

2018年2月12日、中国科学技术支撑对"成一定"重点 建设设("建筑符 装装匠 (Super Tay charte Facility, STOF) 待爾先研究"进行了论证、会议或文下论证专家委员会《名 并得念)。有我了要冒身者人起就简整主持项目汇报。经议总

1、能子於理學《老孫為監報順》是研究此應子被更深展 **设设有的基本构成、相互的用效及自然各最基本或供的价值**

USTC "double first-class" key project

Launched the conceptual design study and feasibility study

Governments of Anhui Province and Hefei City Endorsed the STCF Key Technology R&D project

STCF Project Development

Initial budget for the Key technology R&D project of 20 M RMB from the local government

Budget Review for Key technology R&D project Approved for 364 M RMB

2023.01

2023.08

2023.12

2024.01

2024.05

2024.09

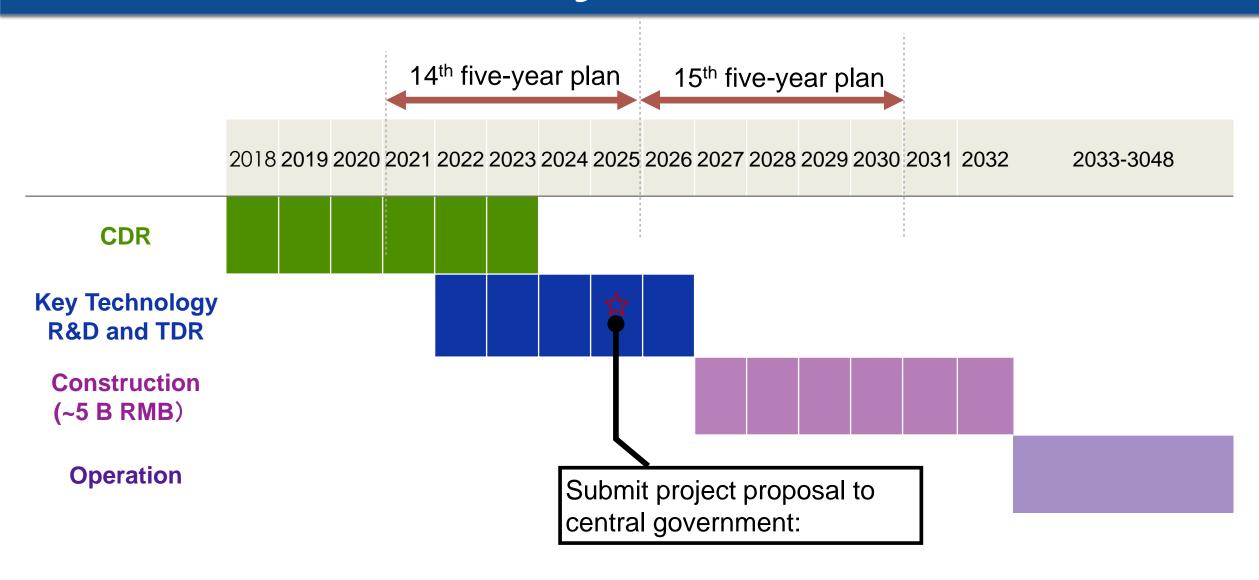
Key technology R&D project kickoff and strategy development meeting

Over 170 attendees, including 30 academicians of CAS

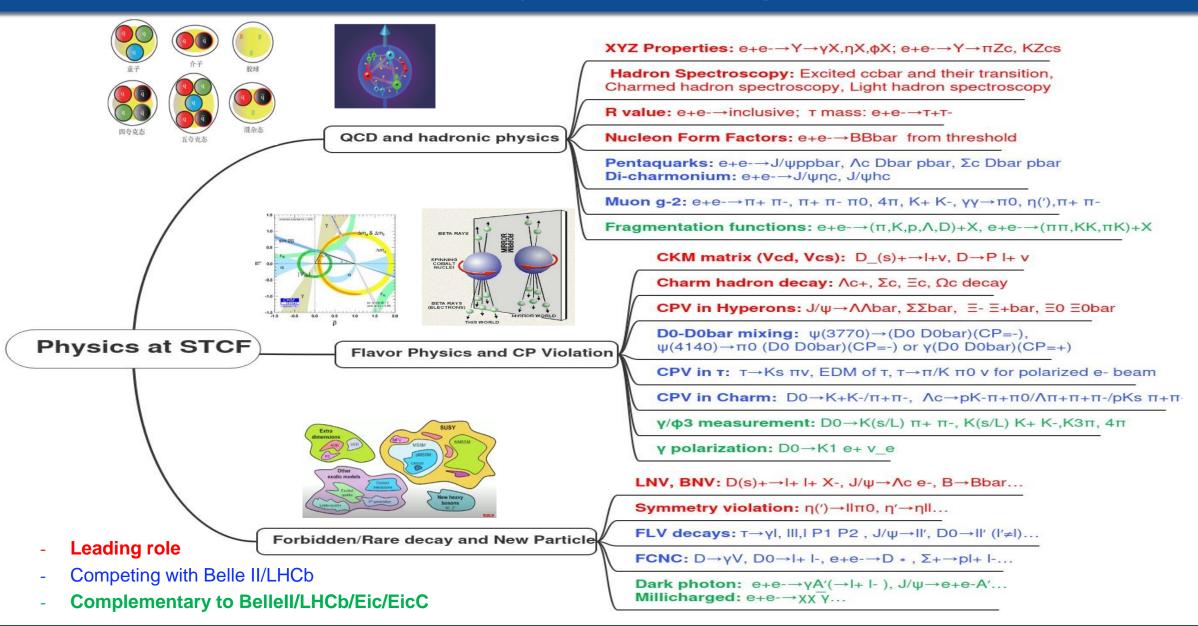
1st International Advisory Committee meeting

The pre-proposal for Major National Science and Technology Infrastructure Projects for the 15th Five-Year Plan submitted to CAS

R&D Project Review and Kick-Off Meetings


Kick-off Meeting, Aug. 2023, USTC

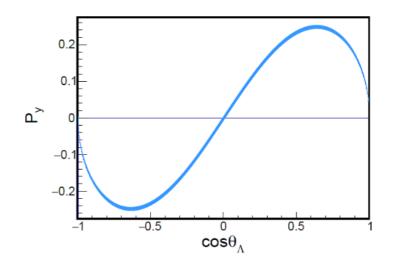
More than 30 academicians of CAS, as well as government officials of Anhui province and Hefei city, along with representatives from various domestic research institutions, totaling 170 attendees.

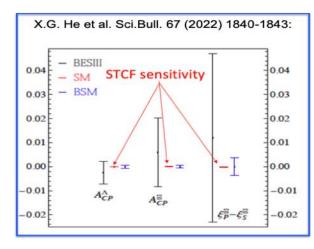

R&D Project Review, Dec. 2023, USTC

Organized by Development and Reform Commissions of Anhui province and Hefei city. The R&D project was approved for a total budget of 364 M RMB and is jointly funded by Anhui, Hefei and USTC.

STCF Project Schedule

STCF Physics Program

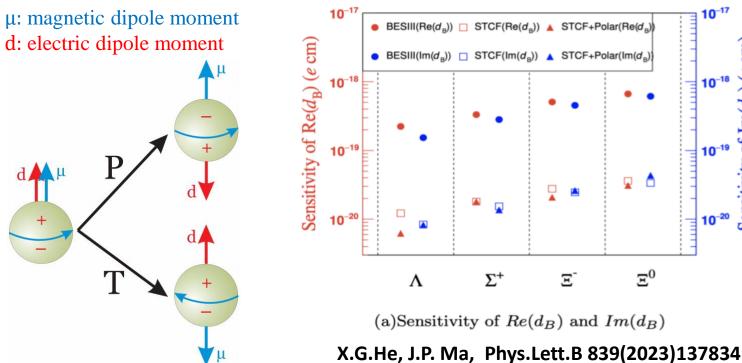


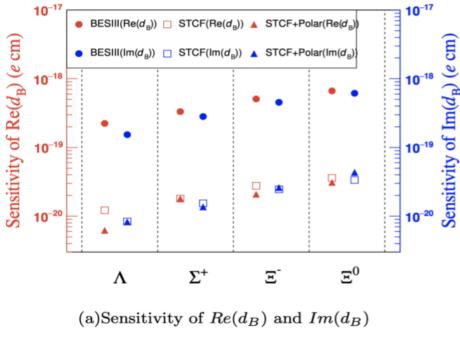

(I) Tests of Fundamental Symmetries

- The discrete symmetries (C, P, T ...) play a crucial role in understanding natural laws
- There is experimental evidence of parity (P), time reversal (T), charge conjugation (C), and combined CP violation.
- STCF will enable more precise tests of symmetry-breaking properties and more sensitive searches for new symmetry breaking with huge numbers of K, τ , hyperons and charmed hadrons.
- STCF prospects:
 - CPV in hyperons and charmed hadrons
 - EDM of hyperons and tau
 - CLFV in tau and charmonium decays
 - CPT in neutral Kaon system

CP Violation in Hyperons

- CP violation observed in K, B, D mesons and B baryons, all consistent with CKM theory in SM
- Baryon asymmetry of the universe indicates the existence of non-SM CPV sources
- Only strange baryons and charm baryons remain unexplored for CP violation
- STCF has great potential for discovering CPV in hyperons using hyperon pairs in J/psi decays
- Unique advantages at STCF: quantum correlated, large statistics, clear environment




$$\begin{split} \sigma_{A_{CP}} &\approx \sqrt{\frac{3}{2}} \frac{1}{\alpha_1 \sqrt{N_{sig}} \sqrt{\langle P_B^2 \rangle}}. \\ &\xrightarrow{1 \times 10^9 \, \Lambda \overline{\Lambda}, \quad \langle P_B^2 \rangle = 0.1} \sigma_{A_{CP}} \sim 1.4 \times 10^{-4} \\ &\xrightarrow{1 \times 10^9 \, \Lambda \overline{\Lambda}, \quad \langle P_B^2 \rangle = 0.8} \sigma_{A_{CP}} \sim 5 \times 10^{-5} \end{split}$$

Highest sensitivity on hyperon CPV in the world

EDM of Hyperons

- Non-zero EDM indicates T violation, and hence CP violation if CPT holds
- J/psi decays to hyperon pairs at STCF offer an excellent laboratory for in-direct measurement of hyperon EDM

STCF: improved by 2 order of magnitude

BESIII: milestone for hyperon

 10^{-16} e cm)

EDM measurement

 $\Lambda \, 10^{-19}$ e cm (FermiLab

first achievement for $\Sigma^+,\Xi^$ and Ξ^0 at level of 10^{-19} e cm

a litmus test for new physics

SM: $\sim 10^{-26}$ e cm

Highest sensitivity on hyperon EDM in the world

Milestone in CPV studies at STCF

CP violation studies at Super tau-charm facility

Hai-Yang Cheng^a, Zhi-Hui Guo^b, Xiao-Gang He^c, Yingrui Hou^d, Xian-Wei Kang^e, Andrzej Kupsc^{f,g}, Ying-Ying Li^h, Liang Liu^h, Xiao-Rui Lyu^d, Jian-Ping Maⁱ, Stephen Lars Olsen^{j,k}, Haiping Peng^h, Qin Qin^q, Pablo Roig^{m,n}, Zhi-Zhong Xing^o, Fu-Sheng Yu^p, Yu Zhang^q, Jianyu Zhang^d, Xiaorong Zhou^h

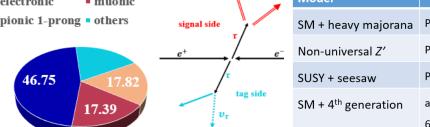
^aInstitute of Physics, Academia Sinica, Taipei, 11529, China ^bHebei Normal University, Shijiazhuang, 050024, China ^cShanghai Jiao Tong University, Shanghai, 200250, China ^dUniversity of Chinese Academy of Sciences, Beijing, 100049, China ^eBeijing Normal University, Beijing, 100875, China fNational Centre for Nuclear Research, Warsaw, 02-093, Poland ⁸Uppsala University, Uppsala, SE-75120, Sweden h University of Science and Technology of China, Address One, 230026, China ⁱInstitute of Theoretical Physics, Chinese Academy of Sciences, Beijing, 100190, China ^jHigh Energy Physics Center, Chung-Ang University, Seoul, 06974, Korea ^kParticle and Nuclear Physics Institute, Institute for Basic Science, Daejeon, 34126, Korea ¹Huazhong University of Science and Technology, Wuhan, 430074, China ^mDepartamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, AP 14740, CP 07000, Mexico ⁿIFIC, Universitat de València – CSIC, Paterna, E-46980, Spain OInstitute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China ^pLanzhou University, Lanzhou, 730000, China ^qUniversity of South China, Hengyang, 421001, China

Abstract

Charge-parity (CP) violation in the tau-charm energy region is one of the promising areas to search for. The future tau-charm facility of next generation is designed to operate in a center-of-mass energy from 2.0 to 7.0 GeV with a peak luminosity of $0.5 \times 10^{35} \ \rm cm^{-2} s^{-1}$. Huge amount of hadrons and tau (τ) leptons will be collected with good kinematic constraint and low-background environment. In this report, possibilities of CP violation studies in tau-charm energy region and at the future tau-charm facility are discussed from various aspects, *i.e.* in the production and decay of hyperons and τ lepton; in the decay of charmed hadrons. The CPT invariance test in $K^0 - \bar{K}^0$ mixing is also presented.

ļ	Intr	oduction	4
1	CP	-violation in hyperon sector	7
	2.1	Direct CP violation in strange quark systems	7
	2.2	Hyperon two-body hadronic weak decays	8
	2.3	Spin entangled baryon–antibaryon systems	13
	2.4	Radiative and semileptonic decays	18
	2.5	CP violation in production via edm	22
	2.6	CP violation in charmed baryon decays	22
	2.7	Prospect of hyperon CP-violation study at STCF	24
		2.7.1 Event selection	24
		2.7.2 Sensitivity of <i>CP</i> -violation in hyperon decay	25
		2.7.3 Comparison of hyperon <i>CP</i> sensitivity with different ex-	
		periments	27
3	CP	-violation in $ au$ sector	30
	3.1	Hadronic form factors in semileptonic τ decays	30
	3.2	Structure functions in hadronic τ decays	33
	3.3	CP -violation observables in hadronic τ decays	34
	3.4	CP violating asymmetries in $\tau \to K_S \pi \nu$ decays: the BaBar	
		anomaly and the Belle measurement	36
	3.5	CP-violation proposal via EDM	39
	3.6	Prospect of τ CP -violation study at STCF	40
		3.6.1 MC simulation of $\tau^- \to K_S \pi^- \nu_\tau$	40
		3.6.2 Optimization of event selection	41
		3.6.3 Sensitivity of CP -violation in $\tau^- \to K_S \pi^- \nu_\tau$ at STCF	43
4	CP	-violation in charm sector	45
	4.1	The CKM matrix and its unitarity	45
	4.2	Six types of <i>CP</i> violation	46
		4.2.1 <i>CP</i> violation in the direct decays	46
		4.2.2 <i>CP</i> violation from D^0 - \bar{D}^0 mixing	47
		4.2.3 <i>CP</i> violation from the interplay between decay and mixing	48
		4.2.4 <i>CP</i> violation in the <i>CP</i> -forbidden coherent $D^0\bar{D}^0$ decays.	50

4.2.5 *CP* violation due to the final-state K^0 - \bar{K}^0 mixing 51


Contents

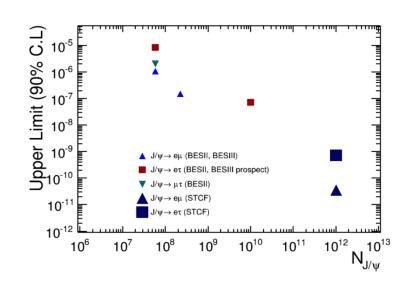
			interference	52	
	4.3	Indirec	et CP violation associated with D^0 - \bar{D}^0 mixing	53	
		4.3.1	Formulas for incoherent neutral D meson decays	54	
		4.3.2	Formulas for coherent $(D^0\bar{D}^0)_{C=\pm 1}$ decays	55	
		4.3.3	CP violation in $D^0 \to \pi^+\pi^-$ and K^+K^- decays	59	
		4.3.4	CP violation in $D^0 \to K^{*+}K^-$ and K^+K^{*-} decays	62	
	4.4		CP violation in the decays of charmed mesons and		
		charme	ed baryons	64	
	4.5	Prospe	ect of Charm CP violation studies at STCF	67	
		4.5.1	Measurements of the $D \to K^-\pi^+\pi^+\pi^-$ decay	67	
		4.5.2	Measurements of the $D \to K_S^0 \pi^+ \pi^-$ decay	68	
		4.5.3	Measurements of the $D \to K^-\pi^+\pi^0$ decay	69	
		4.5.4	Overall prospects	69	
5	Test	s of the	CPT invariance with J/ψ decays	70	
	5.1		and the Theory of Everything	71	
	5.2	Neutra	d K mesons and tests of the CPT theorem	72	
	5.3		eutral kaon mass eigenstates with no CPT-invariance re-		
		lated re	estrictions	73	
		5.3.1	Properties of ε and δ	75	
	5.4	Interfe	rence measurements of the ϕ_{+-} and ϕ_{00} phases	76	
		5.4.1	Estimated measurement sensitivity with $10^{12} J/\psi$ -decays.	77	
	5.5	Comm	ent on the Bell Steinberger relation	79	
	5.6	Comm	ents	82	
	5.7	Prospe	ects of Kaon CPT study at STCF	82	
		5.7.1	MC simulation of $J/\psi \to K^-\pi^+K^0 + c.c.$	83	
		5.7.2	Event selection procedure	83	
		5.7.3	Expected sensitivity at STCF	83	
		5.7.4	Systematic uncertainty discussion	84	
6	Sun	mary		85	
Acknowledgement 8					

Charged Lepton Flavor Violation

- Signal side: $\tau \rightarrow 3$ *leptons*
- Tag side: $\tau \to e \nu \bar{\nu}$, $\mu \nu \bar{\nu}$, $\pi \nu + n \pi^0$ ($\mathcal{B}r = 82\%$)
- Almost background free, sensitivity : \mathcal{B}_{UL}^{90} $(\tau \to \mu\mu\mu) \sim 1/\mathcal{L}$
- Best efficiency ($\tau \to \mu \mu \mu$): 22.5% (including the tag \mathcal{BF})

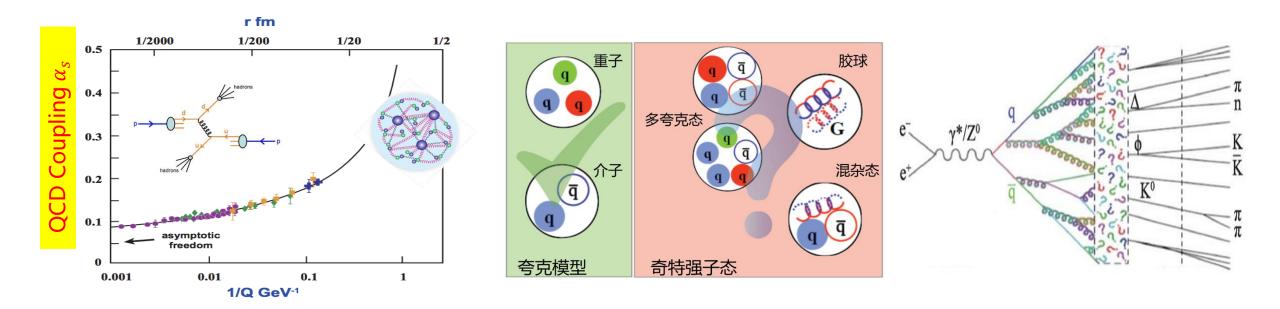
$$\mathcal{B}_{UL}^{90}(au o \mu\mu\mu) < \frac{N_{UL}^{90}}{2\varepsilon N_{\tau\tau}} \sim 1.4 \times 10^{-9}$$

	Model	Ref.	τ→μγ	τ→μμμ
	SM + heavy majorana	PRD 66.034008	10-9	10-10
_	Non-universal Z'	PLB 547(3)252	10-9	10-8
	SUSY + seesaw	PRL 89:241802	10-10	10-7
	SM + 4 th generation	arXiv.1006.530	10-8	10-8
		6		


The cLFV decays of vector mesons $V \rightarrow l_i l_i$ are also predicted in various of extension models of SM:

$$\mathcal{B}_{UL}^{90}(J/\psi \to e\mu) < 10^{-13}$$

 $\mathcal{B}_{UL}^{90}(J/\psi \to e(\mu)\tau) < 10^{-9}$

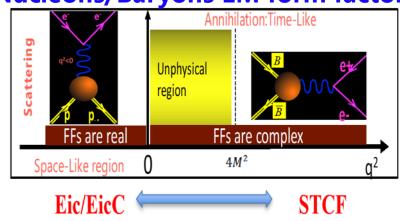

• At STCF, 1 trillion J/ψ can be obtained in one year, taken efficiency from BESIII, the upper limit is predicted to be:

$$\mathcal{B}_{UL}^{90}(J/\psi \to e\mu) < 3.6 \times 10^{-11}$$

 $\mathcal{B}_{UL}^{90}(J/\psi \to e\tau) > 7.1 \times 10^{-10}$

• The $\mathcal{B}_{UL}^{90}(J/\psi \to e\tau)$) can be further **optimized** with better PID.

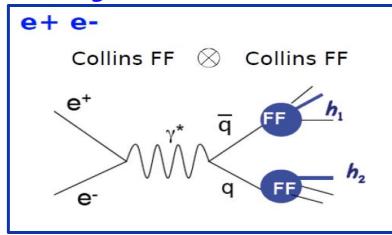
(II) Studies of Quark Confinement

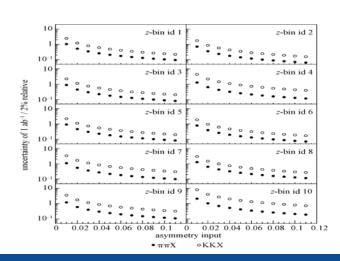


- Unraveling the mechanism of quark confinement requires comprehensive studies of hadron spectroscopy, hadron production, hadron decays, and hadron structure.
- The STCF will produce vast quantities of charmed hadrons and light flavor hadrons, enabling these
 studies to deeply explore how quarks and gluons form hadrons and how quark confinement shapes
 their internal structures.

Hadron Production

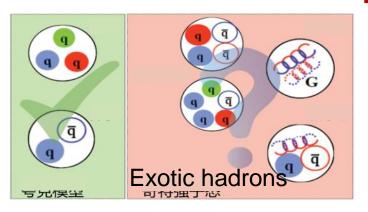
Hadron production at STCF is a key avenue for studies of EM form factors and fragmentation functions

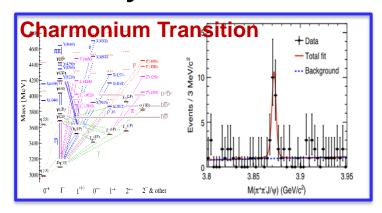

Nucleons/Baryons EM form factors

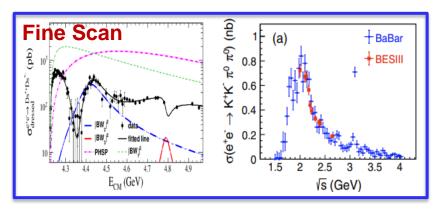


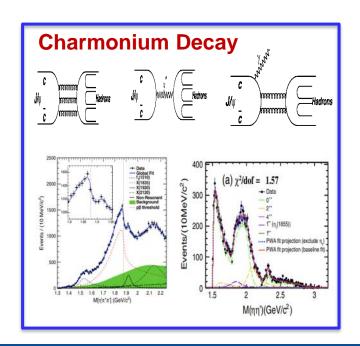
STCF will improve the measurement precision by 2 orders of magnitude, revealing the near-threshold cross section singularity and mystery of $G_{\rm E}$ and $G_{\rm M}$

Fragmentation Functions




Most precise FFs in q2 range 4-50 GeV² with multi-dimensional binning and important input for TMD extraction at EIC/EicC


Precise test the universality of FFs in different processes, and its evolution with q2


Hadron Spectroscopy and Exotic States

A unique territory for the QCD confinement

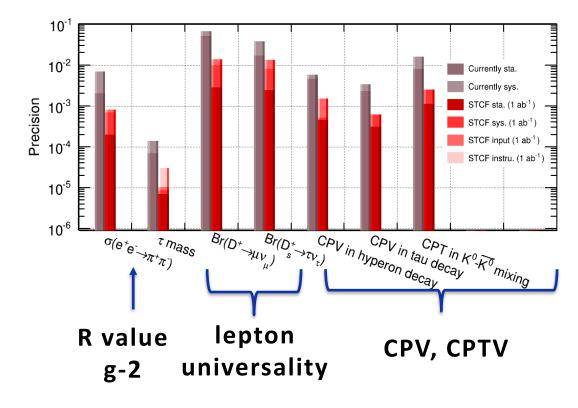
A Charmonium(-like) factory (per year):

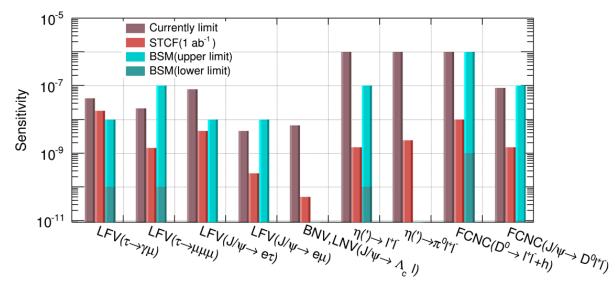
• 3T J/ ψ , 0.6T ψ (3686), 1B Y(4230), 100M Z_c (3900) and 5M X(3872)

Physics opportunities:

- Energy dependent structures of Z_{c(s)}
- More XYZ states → spectroscopy
- Missing Charmonium states and their transitions
- Glueballs and hybrid states

STCF has an dominant advantage in studying hadron spectroscopy and exotic states, and is expected to make significant breakthroughs

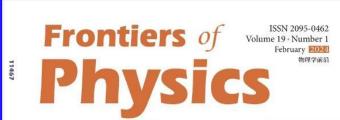

(III) Measurements of Fundamental Physics Parameters


- Essential for testing SM and searching for new physics
- STCF enables high-precision measurements:
 - R-value: A fundamental quantity reflecting quark flavors/colors, with implications for new particle searches and theoretical inputs (e.g., fine-structure constant, muon g-2)
 - Tau lepton mass: Critical for testing lepton universality
 - CKM matrix unitarity and triangle: Violations could hint at a fourth quark generation
 - Strong coupling constant (α_s): Directly impacts
 Higgs/EW/top quark predictions and vacuum stability
 studies

Observable	BESIII (2020)	Belle II (50 ab^{-1})	STCF $(1 ab^{-1})$
${\it Charmonium (like) \ spectroscopy:}$			
Luminosity between 4–5 GeV	$20~{\rm fb^{-1}}$	$0.23~{\rm ab^{-1}}$	$1~\mathrm{ab^{-1}}$
Collins fragmentation functions:			
Asymmetry in $e^+e^- \to KK + X$	0.3 [470]	_	< 0.002 [471]
CP violations:			
A_{cp} in hyperon	0.014 [26]	-	0.00023
A_{cp} in $ au$	_	$\mathcal{O}(10^{-3})/\sqrt{70}$ [251]	0.0009 [250]
Leptonic decays of $D(s)$:			
V_{cd}	0.03 [472]	=	0.0015
f_D	0.03	=	0.0015
$rac{\mathcal{B}(D ightarrow au u)}{\mathcal{B}(D ightarrow \mu u)}$	0.2	-	0.005
V_{cs}	0.02 [473]	0.005	0.0015
f_{D_s}	0.02	0.005	0.0015
$rac{\mathcal{B}(D_s\! o\! au u)}{\mathcal{B}(D_s\! o\!\mu u)}$	0.04	0.009	0.0038
D mixing parameter:	,		
x	-	0.03	0.05 [474]
y	_	0.02	0.05
τ properties:			
$m_{ au}~({ m MeV}/c^{-2})$	0.12 [475]	_	0.012
$d_{ au}~({ m e~cm})$	-	2.02×10^{-19}	5.14×10^{-19}
cLFV decays of $\tau(U.L$ at 90% C.L.):			
au ightarrow lll	-	1×10^{-9}	1.4×10^{-9}
$ au o \gamma \mu$	-	5×10^{-9}	1.8×10^{-8}
$J/\psi o e au$	7.5×10^{-8}	=:	7.1×10^{-10}

Precision Measurements and Rare Decays

- STCF is expected to improve the current precisions of many important measurements by ~1 order of magnitude and enhance sensitivities to various rare or forbidden decays by ~2 orders of magnitude
- Great potential to reveal new physics

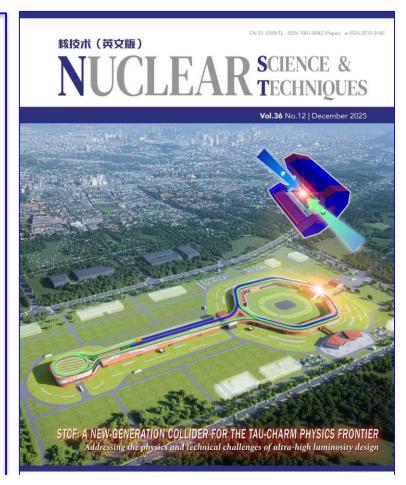


LFV, BNV, FCNC to probe BSM

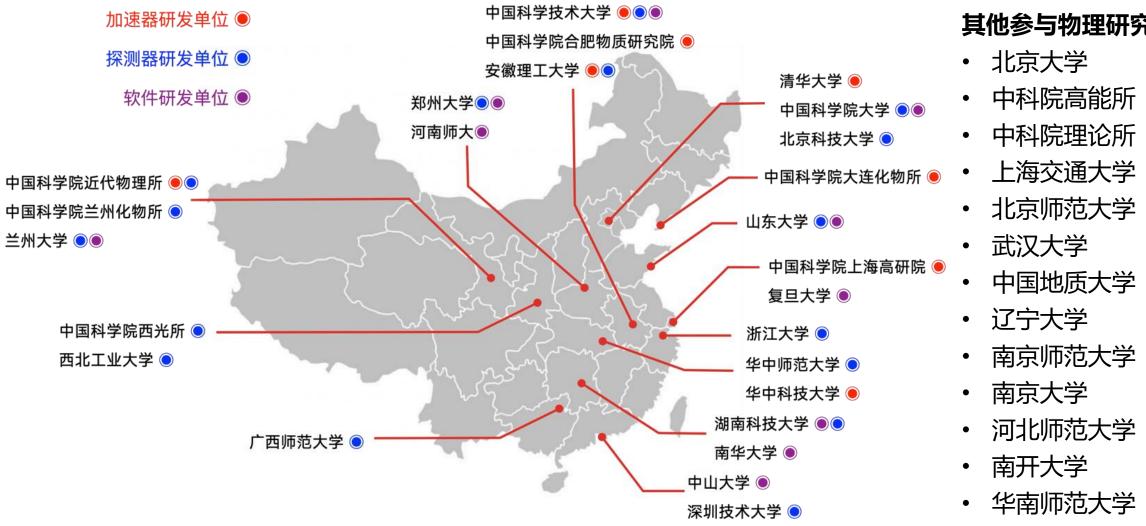
STCF Conceptual Design Studies

Physics & Detector CDR

82 institutions, 453 authors


FRONTIERS OF PHYSICS

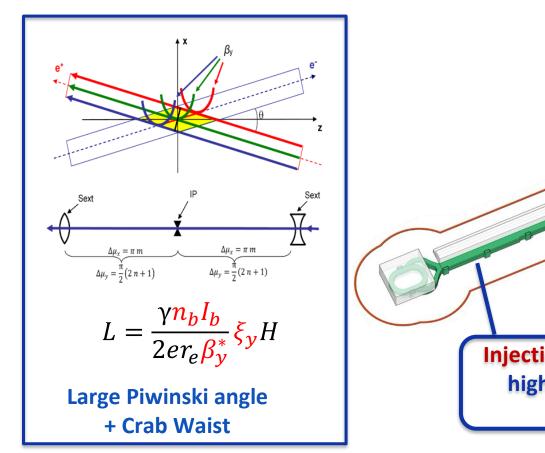
STCF conceptual design report (Volume 1): Physics & detector


M. Achasov³, X. C. Ai⁸², R. Aliberti³⁸, Q. An^{63,72}, X. Z. Bai^{63,72}, Y. Bai⁶², O. Bakina³⁹, A. Barnyakov^{3,50}, V. Blinov^{3,50,51}, V. Bobrovnikov^{3,51}, D. Bodrov^{23,60}, A. Bogomyagkov³, A. Bondar³, I. Boyko³⁹, Z. H. Bu⁷³, F. M. Cai²⁰, H. Cai⁷⁷, J. J. Cao²⁰, Q. H. Cao⁵⁴, X. Cao³³, Z. Cao^{63,72}, Q. Chang²⁰, K. T. Chao⁵⁴, D. Y. Chen⁶², H. Chen⁸¹, H. X. Chen⁶², J. F. Chen⁵⁸, K. Chen⁶, L. L. Chen²⁰ P. Chen⁷⁸, S. L. Chen⁶, S. M. Chen⁶⁶, S. Chen⁶⁹, S. P. Chen⁶⁹, W. Chen⁶⁴, X. Chen⁷⁴, X. F. Chen⁵⁸, X. R. Chen³³, Y. Chen³², Y. Q. Chen³⁶, H. Y. Cheng³⁴, J. Cheng⁴⁸, S. Cheng²⁸, T. G. Cheng², J. P. Dai⁸⁰, L. Y. Dai²⁸, X. C. Dai⁵⁴, D. Dedovich³⁹, A. Denig^{19,38}, I. Denisenko³⁹, J. M. Dias⁴ D. Z. Ding⁵⁸, L. Y. Dong³², W. H. Dong^{63,72}, V. Druzhinin³, D. S. Du^{63,72}, Y. J. Du⁷⁷, Z. G. Du⁴¹ L. M. Duan³³, D. Epifanov³, Y. L. Fan⁷⁷, S. S. Fang³², Z. J. Fang^{63,72}, G. Fedotovich³, C. Q. Feng^{63,72}, X. Feng⁵⁴, Y. T. Feng^{63,72}, J. L. Fu⁶⁹, J. Gao⁵⁹, P. S. Ge⁷³, C. Q. Geng¹⁵, L. S. Geng², A. Gilman⁷¹ L. Gong⁴³, T. Gong²¹, B. Gou³³, W. Gradl³⁸, J. L. Gu^{63,72}, A. Guevara⁴, L. C. Gui²⁶, A. Q. Guo³³, F. K. Guo^{4,69,2}, J. C. Guo^{63,72}, J. Guo⁵⁹, Y. P. Guo¹¹, Z. H. Guo¹⁶, A. Guskov³⁹, K. L. Han⁶⁹, L. Han^{63,72}, M. Han^{63,72}, X. Q. Hao²⁰, J. B. He⁶⁹, S. Q. He^{63,72}, X. G. He⁵⁹, Y. L. He²⁰, Z. B. He³³, Z. X. Heng²⁰ B. L. Hou^{63,72}. T. J. Hou⁷⁴. Y. R. Hou⁶⁹. C. Y. Hu⁷⁴. H. M. Hu³². K. Hu⁵⁷. R. J. Hu³³. X. H. Hu⁹. Y. C. Hu⁴⁹. J. Huang⁶¹, G. S. Huang⁶³, 7², J. S. Huang⁴⁷, M. Huang⁶⁹, Q. Y. Huang⁶⁹, W. Q. Huang⁶⁹, X. T. Huang⁵⁷, X. J. Huang³³, Y. B. Huang¹⁴, Y. S. Huang⁶⁴, N. Hüsken³⁸, V. Ivanov³, Q. P. Ji²⁰, J. J. Jia⁷⁷, S. Jia⁶², Z. K. Jia^{63,72}, H. B. Jiang⁷⁷, J. Jiang⁵⁷, S. Z. Jiang¹⁴, J. B. Jiao⁵⁷, Z. Jiao²⁴, H. J. Jing⁶⁹, X. L. Kang⁸, X. S. Kang⁴³, B. C. Ke⁸², M. Kenzie⁵, A. Khoukaz⁷⁶, I. Koop^{3,50,51}, E. Kravchenko^{3,51}, A. Kuzmin³, Y. Lei⁶⁰, E. Levichev³, C. H. Li⁴², C. Li⁵⁵, D. Y. Li³³, F. Li^{63,72}, G. Li⁵⁵, G. Li¹⁵, H. B. Li^{32,69}, H. Li^{63,72}, H. N. Li⁶¹, H. J. Li²⁰, H. L. Li²⁷, J. M. Li^{63,72}, J. Li³², L. Li⁵⁶, L. Li⁵⁹, L. Y. Li^{63,72}, N. Li⁶⁴, P. R. Li⁴¹, R. H. Li³⁰, S. Li⁵⁹, T. Li⁵⁷, W. J. Li²⁰, X. Li³³, X. H. Li⁷⁴, X. Q. Li⁶, X. H. Li^{63,72}, Y. Li⁷⁹, Y. Y. Li⁷², Z. J. Li³³, H. Liang^{63,72}, J. H. Liang⁶¹, Y. T. Liang³³, G. R. Liao¹³, L. Z. Liao²⁵, Y. Liao⁶¹, C. X. Lin⁶⁹, D. X. Lin³³, X. S. Lin^{63,72}, B. J. Liu³², C. W. Liu¹⁵, D. Liu^{63,72}, F. Liu⁶, G. M. Liu⁶¹, H. B. Liu¹⁴, J. Liu⁵⁴, J. J. Liu⁷⁴, J. B. Liu^{63,72}, K. Liu⁴¹, K. Y. Liu⁴³, K. Liu⁵⁹, L. Liu^{63,72}, Q. Liu⁶⁹, S. B. Liu^{63,72}, T. Liu¹¹, X. Liu⁴¹, Y. W. Liu^{63,72} Y. Liu⁸², Y. L. Liu^{63,72}, Z. Q. Liu⁵⁷, Z. Y. Liu⁴¹, Z. W. Liu⁴⁵, I. Logashenko³, Y. Long^{63,72}, C. G. Lu³³, J. X. Lu², N. Lu^{63,72}, Q. F. Lü²⁶, Y. Lu⁷, Y. Lu⁶⁹, Z. Lu⁶², P. Lukin³, F. J. Luo⁷⁴, T. Luo¹¹, X. F. Luo⁶, H. J. Lyu²⁴, X. R. Lyu⁶⁹, J. P. Ma³⁵, P. Ma³⁵, Y. Ma¹⁵, Y. M. Ma³³, F. Maas^{19,38}, S. Malde⁷¹, D. Matvienko³, Z. X. Menq⁷⁰, R. Mitchell²⁹, A. Nefediev⁴⁰, Y. Nefedov³⁹, S. L. Olsen^{22,53}, Q. Ouyanq^{32,63}, P. Pakhlov²³, G. Pakhlova^{23,52}, X. Pan⁶⁰, Y. Pan⁶², E. Passemar^{29,65,67}, Y. P. Pei^{63,72}, H. P. Peng^{63,72}, L. Peng²⁷, X. Y. Peng⁸, X. J. Peng⁴¹, K. Peters¹², S. Pivovarov³, E. Pyata³, B. B. Qi^{63,72}, Y. Q. Qi^{63,72}, W. B. Qian⁶⁹ Y. Qian³³, C. F. Qiao⁶⁹, J. J. Qin⁷⁴, J. J. Qin^{63,72}, L. Q. Qin¹³, X. S. Qin⁵⁷, T. L. Qiu³³, J. Rademacker⁶⁸, C. F. Redmer³⁸, H. Y. Sang^{63,72}, M. Saur⁵⁴, W. Shan²⁶, X. Y. Shan^{63,72}, L. L. Shang²⁰, M. Shao^{63,72} L. Shekhtman³, C. P. Shen¹¹, J. M. Shen²⁸, Z. T. Shen^{63,72}, H. C. Shi^{63,72}, X. D. Shi^{63,72}, B. Shwartz³, A. Sokolov³, J. J. Song²⁰, W. M. Song³⁶, Y. Song^{63,72}, Y. X. Song¹⁰, A. Sukharev^{3,51}, J. F. Sun²⁰, L. Sun⁷⁷, X. M. Sun⁶, Y. J. Sun^{63,72}, Z. P. Sun³³, J. Tang⁶⁴, S. S. Tang^{63,72}, Z. B. Tang^{63,72}, C. H. Tian^{63,72}, J. S. Tian⁷⁸, Y. Tian³³, Y. Tikhonov³, K. Todyshev^{3,51}, T. Uglov⁵², V. Vorobyev³, B. D. Wan¹⁵, B. L. Wang⁶⁹, B. Wang^{63,72}, D. Y. Wang⁵⁴, G. Y. Wang²¹, G. L. Wang¹⁷, H. L. Wang⁶¹, J. Wang⁴⁹, J. H. Wang^{63,72}, J. C. Wang^{63,72}, M. L. Wang³², R. Wang^{63,72}, R. Wang³³, S. B. Wang⁵⁹, W. Wang⁵⁹, W. P. Wang^{63,72}, X. C. Wang²⁰, X. D. Wang⁷⁴, X. L. Wang^{63,72}, X. L. Wang²⁰, X. P. Wang², X. F. Wang⁴¹,

Accelerator CDR

114 institutions, 460 authors

STCF Team for Technology R&D and Physics Studies



其他参与物理研究的单位:

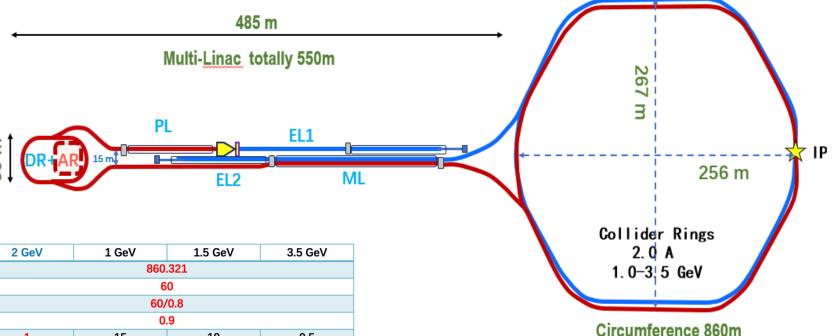
25 universities/institutes participating in the R&D project: ~200 faculty/staff members and ~300 students

Challenges of STCF Accelerator

- Ultra-high luminosity in the tau charm energy region, high-quality beam, stable operation
- Characterized by extremely small bunch size, high beam current, strong nonlinearity and collective effects

Collider Ring and IR Physics Design
IP beam size (Y) nm scale, CrabWaist, nonlinear compensation
extremely difficult

IR Technologies SC magnets, MDI

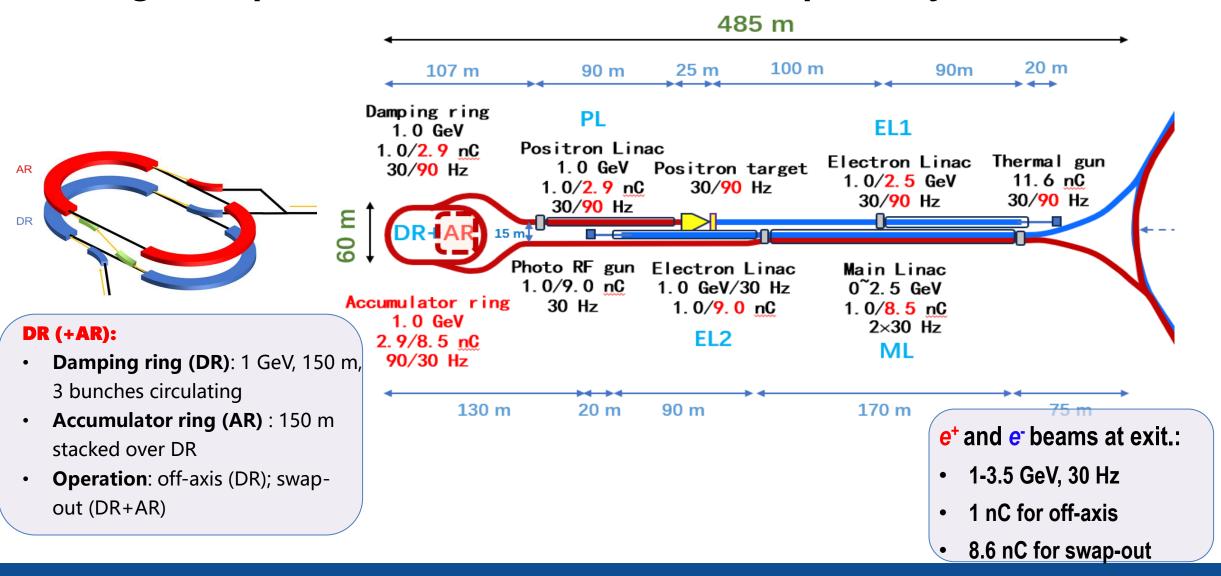

Injection into CR (small DA) high I_b and low ϵ e+/e-sources

Other key technologies
Ring RF, beam instrumentation
and control, beam injection...

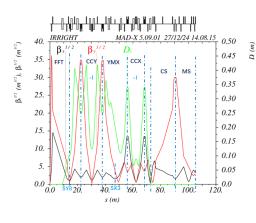
STCF Accelerator Conceptual Design

Injector:

- full-energy linac
- positron DR or AR for different injection modes: off-axis(baseline), swap-out

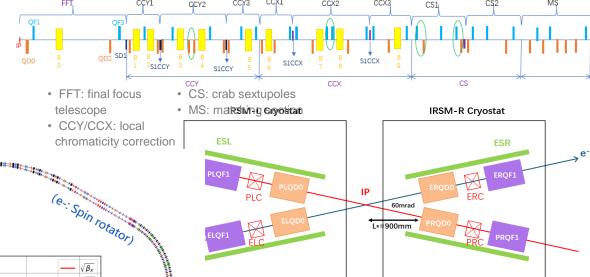

Parameters	Units	2 GeV	1 GeV	1.5 GeV	3.5 GeV
Circumference, C	m	860.321			
Crossing angle, 2θ	mrad	60			
Hor. /Ver. beta function at IP, β_x^*/β_y^*	mm	60/0.8			
L*	m		0	.9	
Ratio, $\varepsilon_y/\varepsilon_x$	%	1	15	10	0.5
Hor./Ver. betatron tune		30.543/34.58 30.555/34.57			
Beam current, /	Α	2	1.1	1.7	2
Hori. emittance (SR/DW+IBS)	nm	8.79/4.63	2.2/5.42	4.94/3.82	26.9/26.91
Momentum compaction factor, α_p	10-3	1.35	1.26	1.32	1.37
Energy spread (DW+IBS)	10-4	7.8	6.18	6.93	10.02
Energy loss per turn (SR+DW), U_0	keV	543	106	267	1494
SR power per beam (SR+DW), P	MW	1.086	0.117	0.453	2.988
RF voltage	MV	2.5	0.75	1.2	6
Synchrotron tune, ν_s		0.0194	0.0146	0.0154	0.0228
δ_{RF}	%	1.68	1.44	1.35	1.88
Bunch length (Nature/0.1Ω+IBS)	mm	7.21/8.70	6.62/9.79	7.89/8.56	8.26/8.89
Hor./Ver. beam-beam parameter, ξ_x/ξ_y		0.005/0.095	0.005/0.023	0.004/0.033	0.003/0.032
Luminosity	cm ⁻² s ⁻¹	9.4E+34	6.19E+33	2.09E+34	4.48E+34

Double-Ring Collider


- low emittance
- high current
- large Piwinski angle
- **Crab-waist collision scheme**

Injector Design

Design compatible with both off-axis and swap-out injection schemes

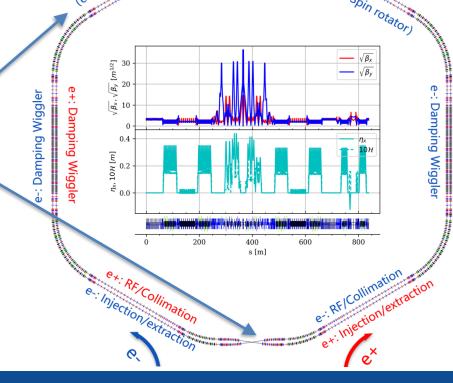


Collider Rings Design

IR design

- Length~200 m, bending 60°
- Crossing angle: 60 mrad
- β_y^* : 0.8 mm
- CCT SC quadrupole magnets

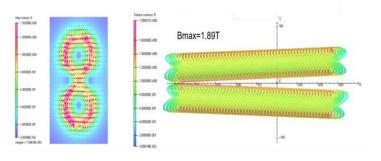
Space reserved for upgrades:


- Spin rotator
- Second IP

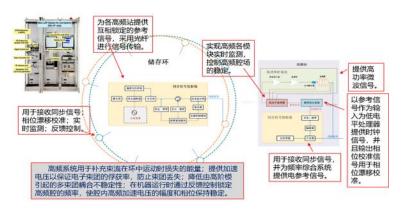
Damping Wiggler

 Adjusting damping time, energy spread, emittance

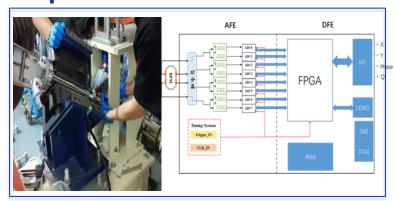
RF cavity


RT TM020-mode cavity

STCF Accelerator R&D


IR SC Magnets

Very constrained Space, 50T/m, CCT technology

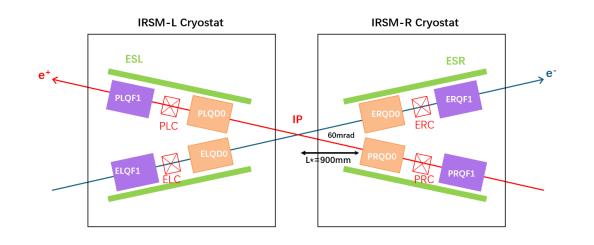


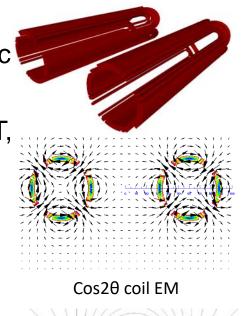
Room-temperature RF cavity TM020 腔仿真

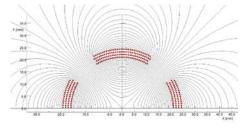
Low-level RF control system


Bunch by bunch 3D beam position measurement

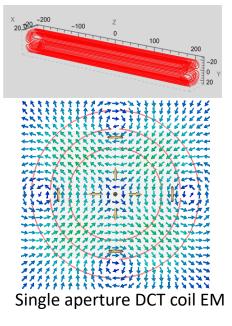
Photo-cathode electron gun

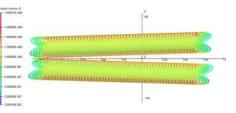

Positron source



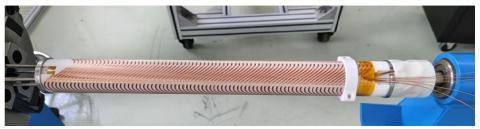

IR SC Magnets (1)

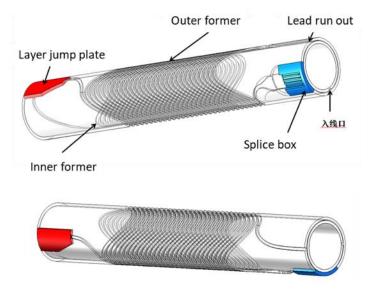
IR SC magnet technique selection

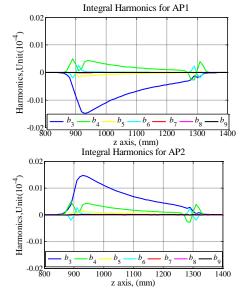

- Joint effort by experienced persons from several domestic institutions including HMFL (High Magnetic Field Lab), IHEP, IMP and others
- Four different techniques studied: CCT, Cos2θ, DCT,
 Serpentine
- CCT was chosen for the further R&D and prototype at this stage

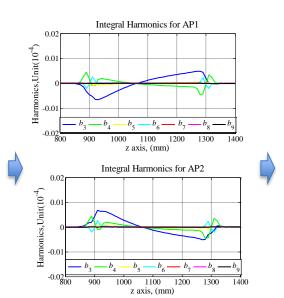


Single aperture serpentine coil


CCT coil EM


IR SC Magnets (2)


R&D and prototyping

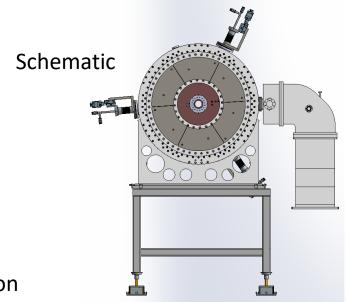

- Focusing on QD0 design (most challenging), both in EM and dimensions;
- Twin-aperture QD0 coil harmonics and cross-talk are under optimization, challenging but almost there!
- CNC machine of the QD0 former is under investigation, local manufacturer has been identified.

Ring RF system

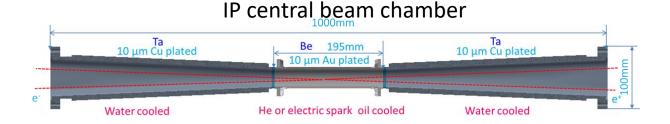
Concerning two collider rings and DR/AR

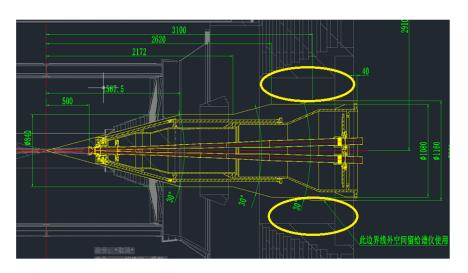
- CR: Challenging due to very high RF power, deep HOM damping and low R/Q
- DR/AR: same RF frequency but relaxed requirements
- Room-temperature TM020-mode RF cavity was chosen

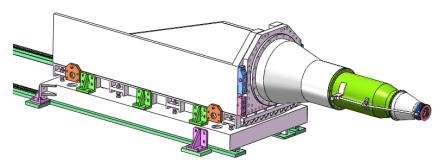
R&D and prototyping

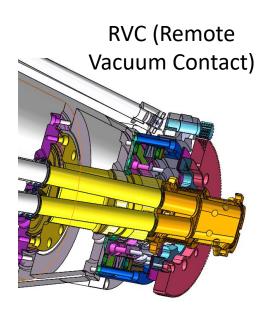

- Prototype fabrication under way at Lanzhou Taiji
- Performance test will be in 2026 using HALF RF power source and test platform

HOM damper



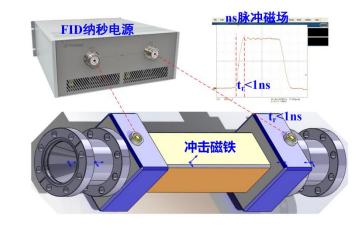

RF parameters	
Working mode	TM020
Frequency [MHz]	499.7
$R/Q[\Omega]$	95
Unloaded quality factor	63000
$E_{\rm p}/E_{\rm acc}$	2.48
$B_{\rm p}/E_{\rm acc}~[{\rm mA/V}]$	2.88

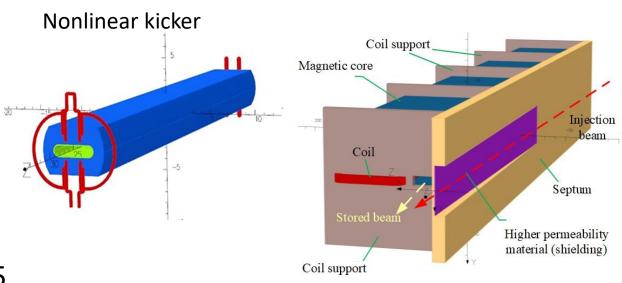



MDI and Mechanics

- key area to focus : Machine-Detector Interface (MDC)
 - Designed IP central beam chamber
 - MDI mechanical model design is under way: 3D design followed by model fabrication
 - Intense discussion required among different groups
- Technical design of the collimators in iteration with physics design

Injection and Extraction System

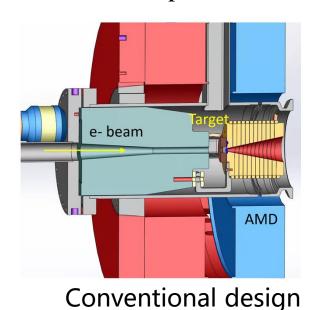

Design requirements

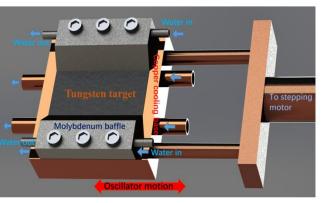

- For both off-axis and swap-out injections
- Off-axis injection: local bump, nonlinear kickers
- Swap-out injection: ultrafast kickers (stripline), < 6 ns (bottom)
- Extraction: swap-out bunch by bunch,
 MPS extracting all bunches
- Septum: Eddy current type

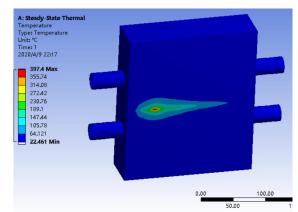
• R&D effort

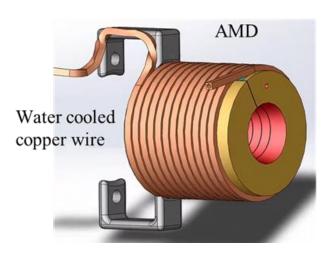
- Prototypes: both nonlinear kicker and ultrafast kicker
- Well in progress, to complete by end 2025

Ultrafast kicker


Eddy current septum


Positron Source


➤ Positron source design

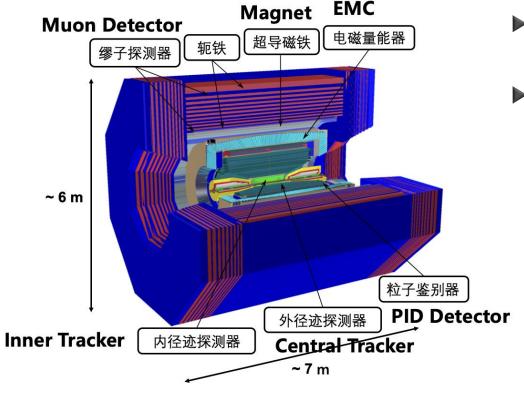

- ➤ Mature technique for off-axis injection scheme: heat load, 15.5 J/g
- ➤ Technically challenging for swap-out injection scheme: heat load 31.8 J/g; moving target design adopted.
- ➤ Prototype of the conventional design for the test beam platform under way

	Dayamatay	Design			
	Parameter	Off-axis	Swap-out		
1	e+ beam for DR/AR	1 GeV/1.5 nC/50 Hz	1 GeV/2.5 nC/100 Hz		
2	e- beam on target	1.5GeV/10nC/50 Hz	2.5GeV/10nC/100Hz		
3	Beam power	745 W	2340 W		
4	Peak power dep.	16.2 J/g	31.8 J/g		
5	Magnetic horn	0.5-5 T	0.5-5 T		
6	e-/e+ conv. Rate	15 %	25 %		
7	Solenoid field	0.5 T	0.5 T		
8	Accel. tube diam.	30 mm	30 mm		

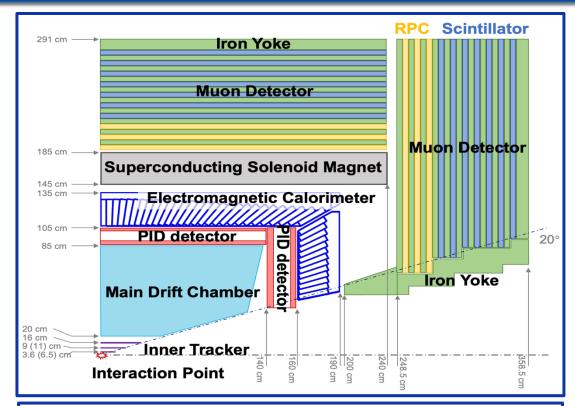
With moving target, temperature below 400°C

Beam Instrumentation

Design goals


- CR precise bunch meas.: bunch-by-bunch 3D meas., trans. position res. <5 μ m, long. phase res. <0.2 ps
- CR B-by-B fast feedback: coupled bunch inst.
- IP: orbit feedback
- Injector: bunch length and charge meas.
- Iterations between physics design and BI group are held regularly
- R&D efforts in progress, to be tested in light sources and e+/e- beam test platform
 - Bunch 3D meas.: probe, signal treat, electronics, S/N, integration
 - B-by-B fast feedback: raising bandwidth, avoiding interference to single bunch
 - Injector bunch length and charge meas.: cavity-based
 - Prototypes: beam tests in different machines (SSRF, HLS, DLS)

Bunch by bunch profile monitor prototype: photodetector, DAQ


Physics Requirements for STCF Detector

- ❖ Highly efficient and precise reconstruction of exclusive final states produced in 2-7 GeV e⁺e⁻ collisions
 - ▶ Precise measurement of low-p (~>1GeV/c) particles
 → low mass tracking and PID detectors
 - \blacktriangleright Excellent PID: π/K and μ/π separation up to 2 GeV and beyond

Process	Physics Interest	Optimized	Requirements
	•	Subdetector	•
$ au o K_s \pi \nu_{\tau},$	CPV in the τ sector,		acceptance: 93% of 4π ; trk. effi.:
$J/\psi ightarrow \Lambda ar{\Lambda},$	CPV in the hyperon sector,	ITK+MDC	$> 99\%$ at $p_T > 0.3 \text{ GeV/c}$; $> 90\%$ at $p_T = 0.1 \text{ GeV/c}$
$D_{(s)}$ tag	Charm physics		$\sigma_p/p=0.5\%,\sigma_{\gamma\phi}=130\mu\mathrm{m}$ at 1 GeV/c
$e^+e^- \to KK + X,$	Fragmentation function,	DID	π/K and K/π misidentification rate < 2%
$D_{(s)}$ decays	CKM matrix, LQCD etc.	PID	PID efficiency of hadrons > 97% at $p < 2$ GeV/c
$ au o \mu\mu\mu, au o \gamma\mu,$	cLFV decay of τ ,	DID - MUD	μ/π suppression power over 30 at $p < 2$ GeV/c,
$D_s o \mu \nu$	CKM matrix, LQCD etc.	PID+MUD	μ efficiency over 95% at $p = 1$ GeV/c
$ au o \gamma \mu,$	cLFV decay of τ ,	EMC	$\sigma_E/E \approx 2.5\%$ at $E = 1 \text{ GeV}$
$\psi(3686) \to \gamma \eta(2S)$	Charmonium transition	EMC	$\sigma_{\rm pos} \approx 5 \; {\rm mm} \; {\rm at} \; E = 1 \; {\rm GeV}$
$e^+e^- \rightarrow n\bar{n},$	Nucleon structure	EMC - MIID	$\sigma_{\rm re} = \frac{300}{100}$ ps
$D_0 \to K_L \pi^+ \pi^-$	Unity of CKM triangle	EMC+MUD	$\sigma_T = \frac{300}{\sqrt{p^3(\text{GeV}^3)}} \text{ ps}$

Detector Design and Key Technologies

Major Performance Requirements

Acceptance: $94\% \times 4\pi$

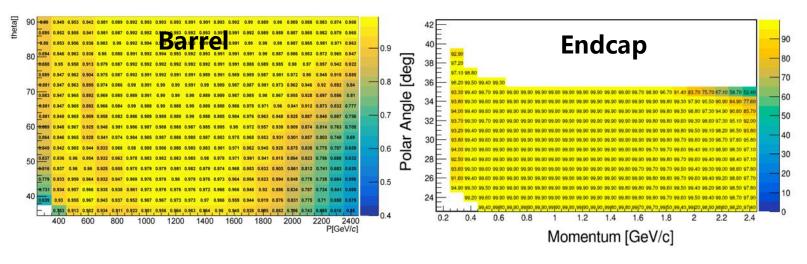
Momentum res.: $\sigma_p/p \sim 0.5\%$ @ 1 GeV

Energy res. : $\sigma_E/E \sim 2.5\%$ @ 1 GeV

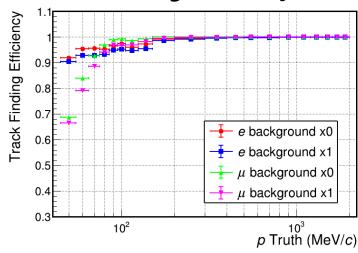
Hadron ID: $\pi/K \sim 4\sigma @ 2 \text{ GeV}$

Muon ID: eff. >95%, mis-rate <3% @1 GeV

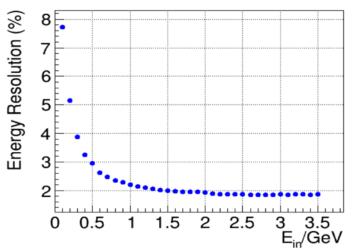
Inner Tracker

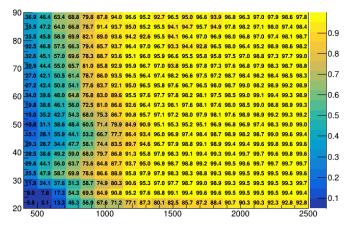

- MPGD: cylindrical uRGroove, $\sigma_x \sim 100 \mu m$
- Silicon: low-mass MAPS, <0.3%X₀/layer
- Central Tracker (σ_p/p~0.5% @ 1GeV)
 - Drift chamber with super-small cells, σ_x < 130 μm
- PID System $(\pi/K \sim 4\sigma @ 2GeV)$
 - Endcap: DIRC-like TOF DTOF (σ_t~30 ps)
 - Barrel: RICH (<4mrad) or DTOF ($\sigma_t \sim 30$ ps)
- EMC
 - pCsI + APD: $(\sigma_E/E \sim 2.5\%, \sigma_x \sim 5 \text{ mm}, \sigma_t \sim 300 \text{ ps} @ 1 \text{GeV})$
- Solenoid: 1 T
- Muon Detector (eff. >95%, mis-rate <3% @1GeV)
 - inner layers : glass RPC, > 300 Hz/cm²
 - outer layers : scintillator strip + SiPM, ~ 2.4 m
- Trigger, DAQ, Clock and Data Transmission

Beam background at the inner most layer

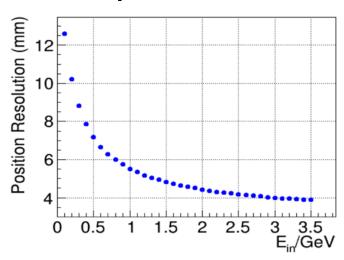

~1 Mrad/y, ~ 1×10^{11} 1MeV n-eq/cm²/y, ~1 MHz/cm²

Expected Performance

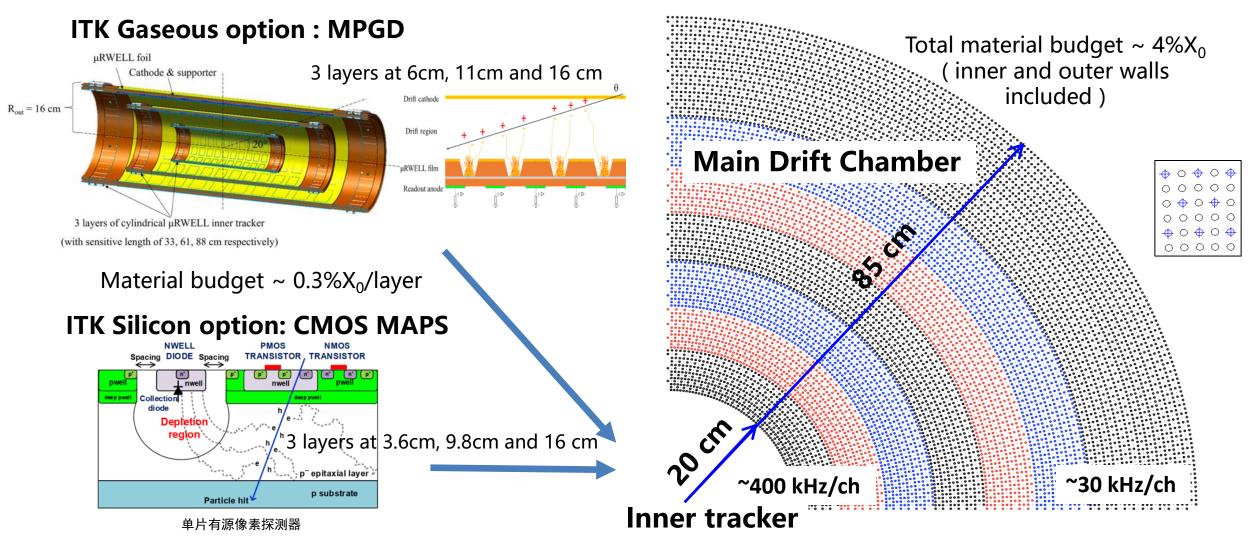

PID: Pion ID eff. >97% @ mis-ID (K->pi)=2%


Tracking efficiency

EMC energy resolution

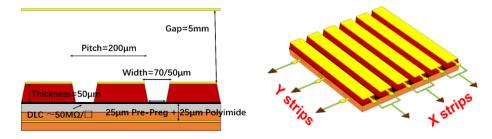


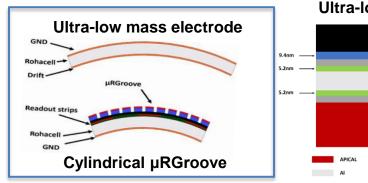
Muon ID eff. @ pi suppression=30

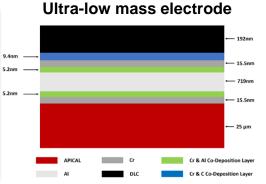


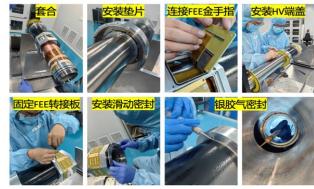
eff. \sim > 90% when p \sim >1GeV/c

EMC position resolution


Tracking System: ITK + MDC

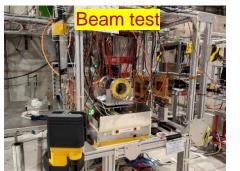

Inner-outer separate designs to accommodate different levels of radiation background

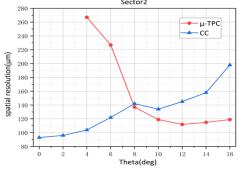

MPGD ITK: µRGroove


 Proposed and developed a novel single-stage MPGD, micro-resistive Groove detector (µRGroove), for the inner tracker: larger signals and easier production compared to µRWELL.

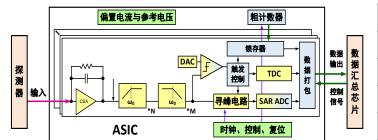


 Developed a set of techniques and procedures for fabricating a cylindrical low-mass μRGroove detector and built a low-mass c-μRGroove prototype: material budget ~ 0.23%X0/layer, the best in cylindrical MPGDs.

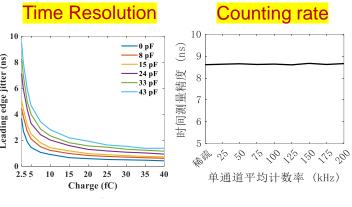


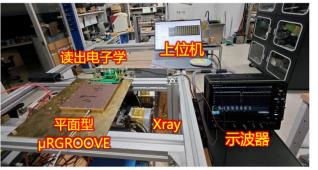


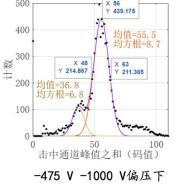
 Conducted multiple beam tests of the prototype at CERN. Position resolution < 100µm for vertical tracks, and <130µm for inclined tracks or in 1T magnetic field.

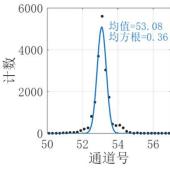


MPGD ITK: Electronics


- ASIC is required for readout. Very challenging performance requirements (event rate much higher than VMM). Designed and produced a 32-channel prototype ASIC chip with full function, and tested it with a detector prototype.
- **Development of readout electronics with the ASIC** is well underway

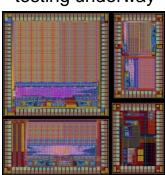



ASIC Specs	Demands
Charge Range	40 fC
Charge precision	\sim 1 fC RMS
Time precision	< 10 ns RMS
Max. event rate	4 MHz

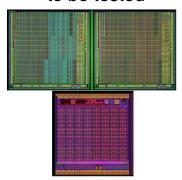


联调现场照片

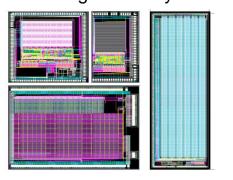
的能谱测量数据



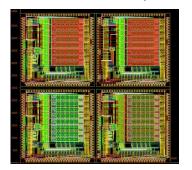
-475 V -2000 V偏压下 的位置测量结果

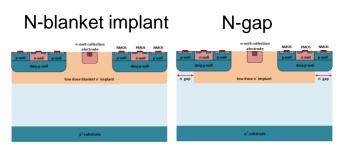

MAPS ITK: MAPS Designs

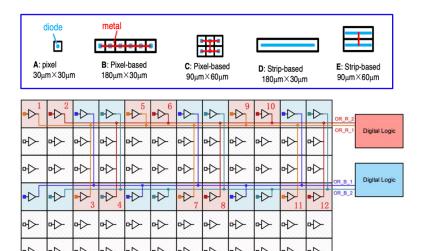
- Core target: a low-power MAPS design with moderate position resolution and both timing and charge measurement capabilities.
- Low power outweighs position resolution: exploring strip-like or large-size pixel MAPS designs to reduce power.
- Exploring a super-pixel design that can provide both high position and high time resolutions for low power consumption.
- Various CMOS processes being explored
 - Mature technology: TowerJazz 180nm (HR epi)
 - Domestic foundries: NexChip BCIS 90nm (LR epi), GSMC 130nm (HR substrate), IRAY 180nm (HR epi)


TowerJazz 180nm Chips received, testing underway

NexChip BCIS 90nm Chips received, to be tested

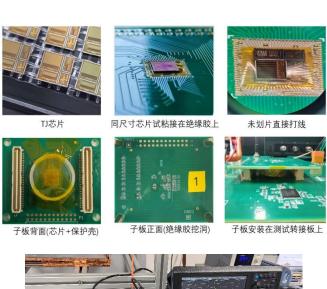


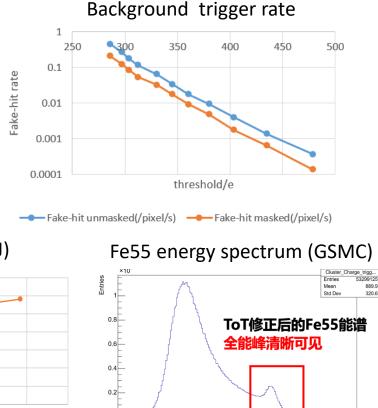

GSMC 130nm Chips received, testing underway

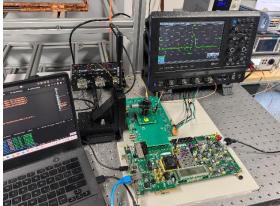


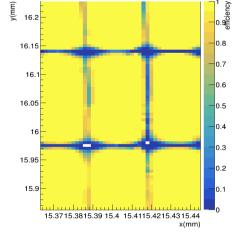
IRAY 180nm

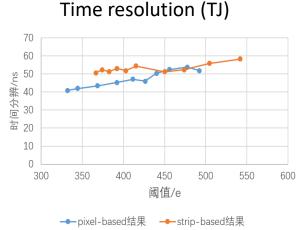
Supporting quadruple-well with possibility of N-blanket implant and N-gap. Chips received, to be tested

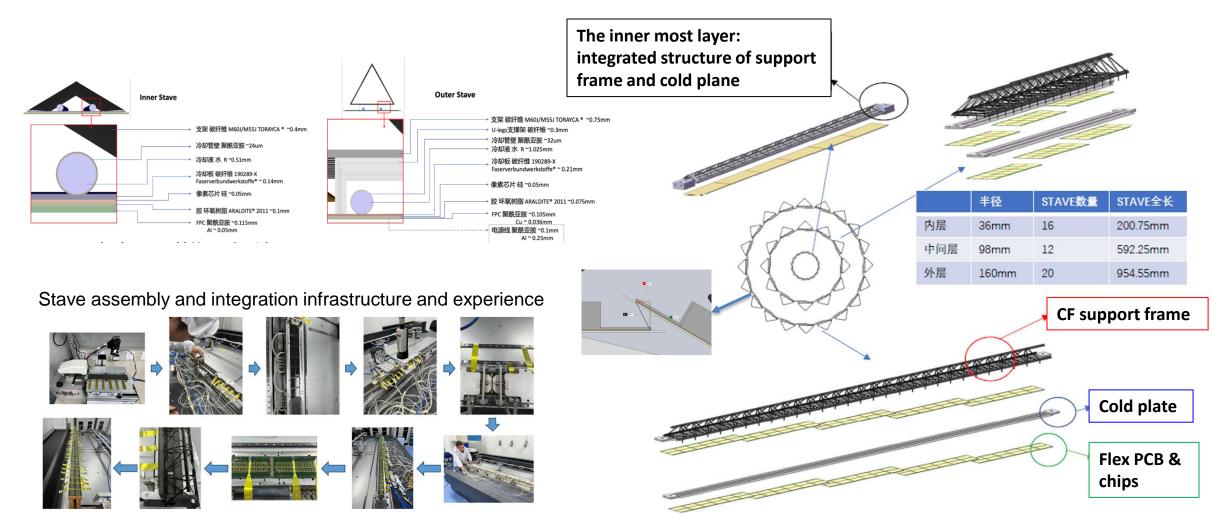




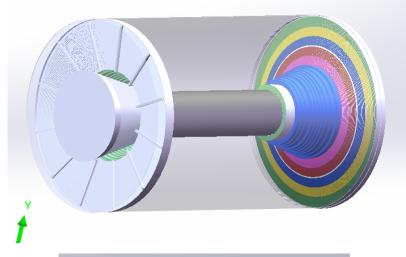

MAPS ITK: MAPS Testing

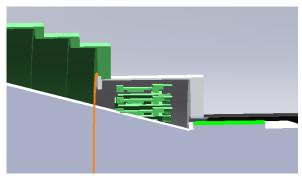

Characterized the TJ and GSMC chips for threshold, noise, fake hit rate and capacitance.
 Tested the chips with laser and radioactive sources (Fe55 and Sr90) for detection efficiency, charge collection efficiency and time resolution.

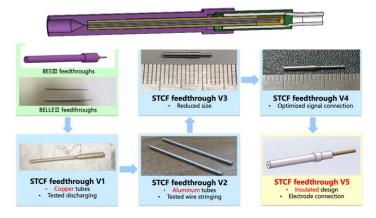

-2 268.2	7.15	16.1	EDO	
			523	7.8
-3 234.7	7 2.75	15.3	477	9.2
-4 212.2	0.82	15.4	417	7.06
-5 178.1	L 5.32	11.3	348	5.92
-6 182.1	l 7.11	12.1	292	5.88


Efficiency

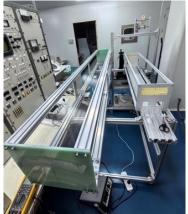
Charge(e-)

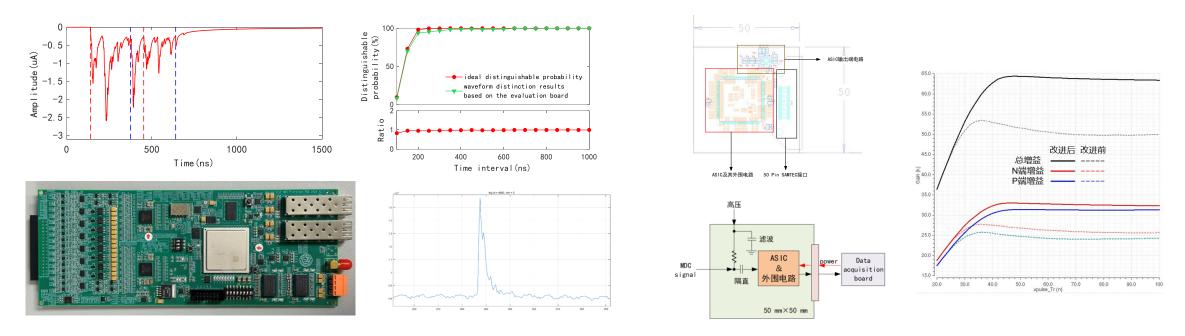

MAPS ITK: Stave Design

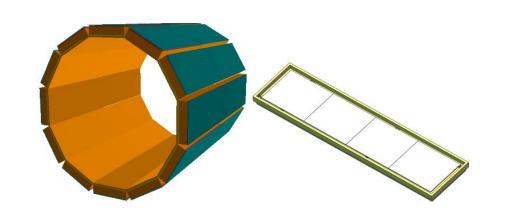

Significant progress has been made in detector module (stave) mechanical design

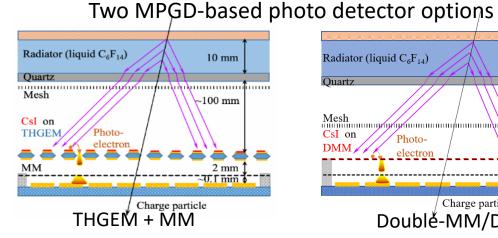


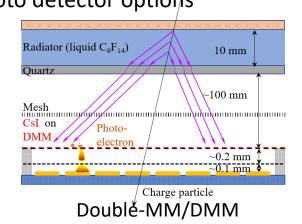
Main Drift Chamber: Detector


- Endplate structure optimized to simplify the assembly process
- Intensive R&D effort on feedthrough for super-small cells (~5 mm)
- A full-length super-small cell drift chamber prototype is under construction.

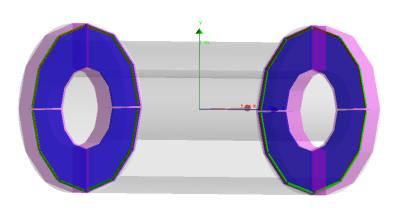


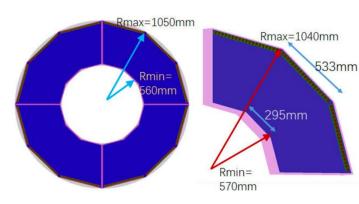

Main Drift Chamber: Electronics

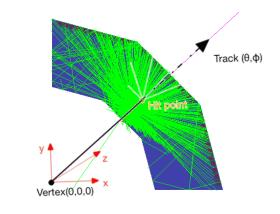

- A major challenge in MDC electronics: discriminating overlapping signal pulses
 (as a result of high counting rate) that are irregular in shape.
- Waveform digitizing electronics is used to allow online waveform discriminating algorithms that run on PFGA. Developed the electronics with discrete components (TIA + shaper + ADC) and tested with detector prototypes.
- ASIC design is underway. First version of the analogue part has been taped out.
 The chip prototype has been produced and is being tested.



PID System


- PID system: thickness < 20cm, material budget < $0.3X_0$, $\pi/K \sim 4\sigma$ @ 2GeV
- Barrel PID: A RICH detector using MPGD with CsI for photon detection, $\sigma_e \sim 4$ mrad

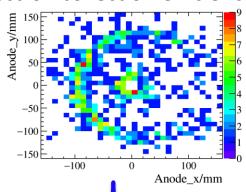


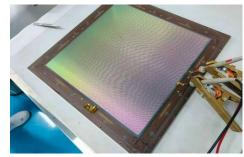


Endcap PID: A DIRC-like TOF detector, DTOF, quartz plate + MCP-maPMT , $\sigma_{\rm f} \sim 30 ps$

15mm

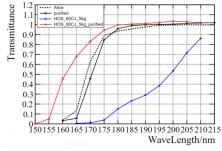
PID Barrel: RICH Detector

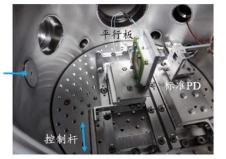

Cosmic-ray test of a 32×32 cm² RICH prototype with

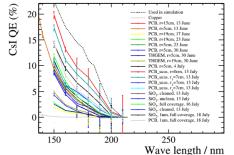

Very low photoelectron yield ~

1/track. Likely causes: low radiator transparency, low cathode QE, low electron collection efficiency

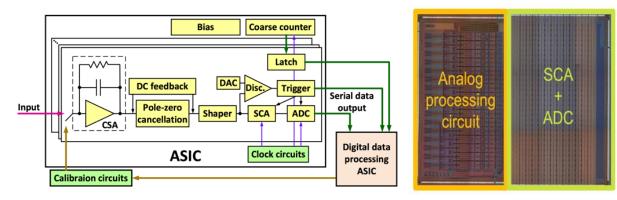
Moved to DMM option: DMM-RICH


- Compact structure
- High gain & good time resolution
- High electron collection efficiency & low ion backflow


Ongoing test of a DMM-RICH prototype

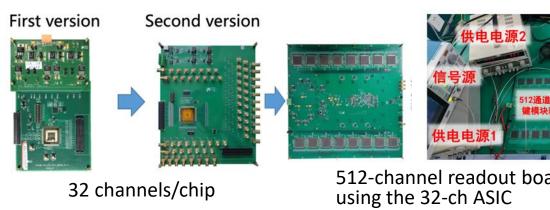

Ongoing efforts to bring up the photoelectron yield

Enhancing radiator transparency by purifying C₆F₁₄



Improving QE: CsI coating and QE measurement

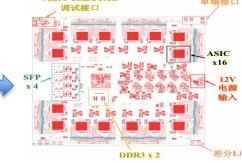
RICH Readout ASIC


A large number of readout channels in high density: $^{\sim}500 \text{ k}$, $5 \times 5 \text{ mm}^2$ granularity, requiring ASIC

Design specs: σ_{t} < 1ns @20fC&20pF, event rate ~ 30 kHz, 32-64 channels

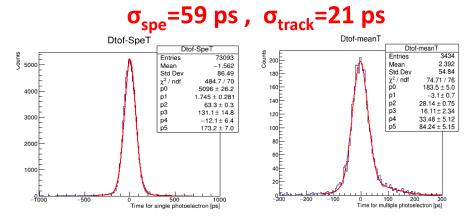
Test results (su) Offline calculation Time resolution (1 2.0 1 with filter 21.0 (LC) CH20 CH32 15 20 25 30 35 40 Input charge (fC) Input Capacitance (pF) Input rate per channel (kHz)

RICH ASIC design evolution



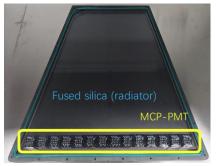
512-channel readout board

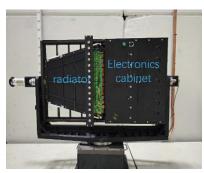
64 channels/chip

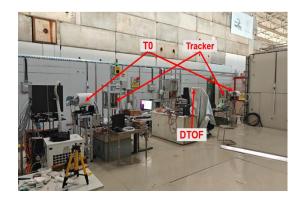

1024-channel readout board being developed

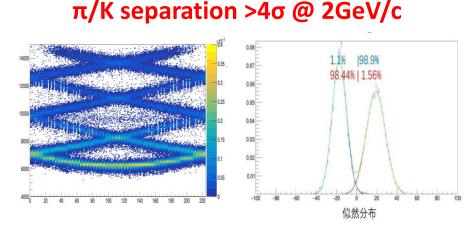
PID Endcap: DTOF Detector

■ A full-size DTOF prototype (a quadrant of STCF DTOF at one endcap) was built and tested with cosmic-rays to demonstrate the DTOF concept and technology on the full scale.

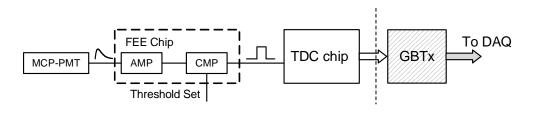


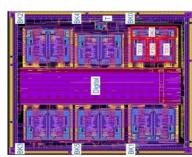


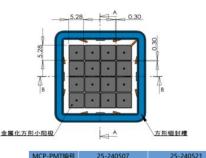



■ A smaller DTOF prototype a third the size of the quadrant was built and tested with particle beams at

CERN to demonstrate the PID capability of the DTOF detector

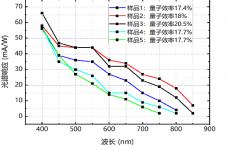


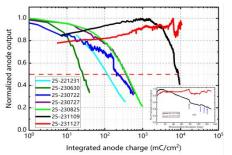


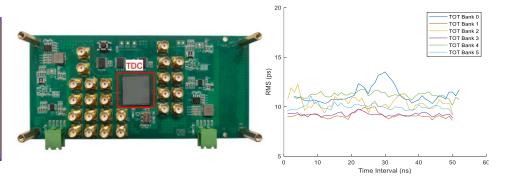


MCP-maPMT and Readout ASICs

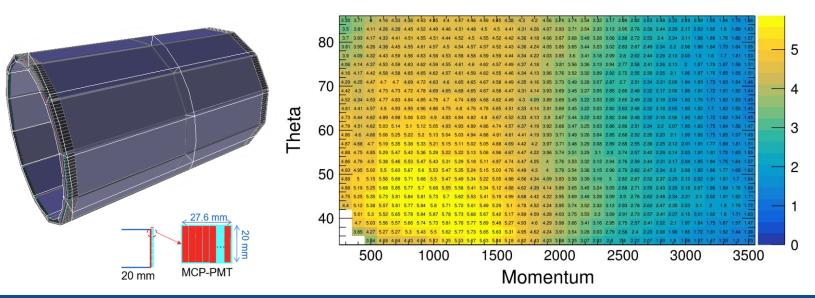
- MCP-maPMT: a critical component of the DTOF technology
- Intensive R&D on techniques (ALD and electron scrubbing) to produce long-life MCP-PMT (target Q > 10 C/cm²).
- Designed and produced 1-inch MCP-maPMT prototypes with 16 annodes each.
- Carried out various tests of the MCP-maPMT prototypes
 - TTS<40 ps, QE>20%, G>10⁶,
 - Aging: <10% gain drop when Q>11C/cm²
- Two ASICs designed for MCP-maPMT readout. Prototype chips produced and tested
 - FET: target ~ 15 ps, measured ~15 ps
 - TDC: target ~ 15 ps , measured ~10 ps



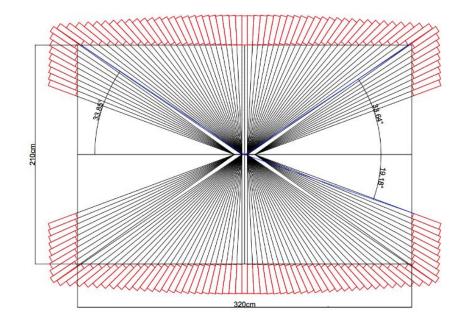


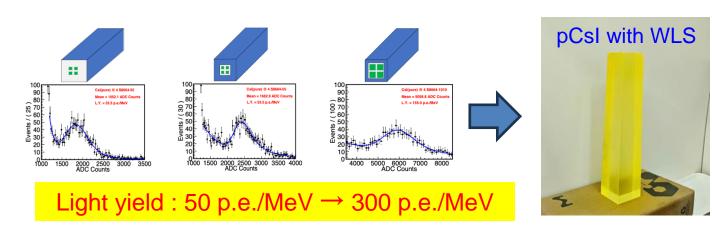


MCP-PMT编号	25-240507	25-240521	25-240605	25-240620
MCP类型		ALD-MCP, A	LD镀膜厚度: D2	
MCP厂家	厂家1	厂家1	厂家2	厂家2
MCP电子清刷	0.75 uA-h/cm ²	0.87 uA·h/cm ²	0.75 uA·h/cm ²	0.87 uA·h/cm ²



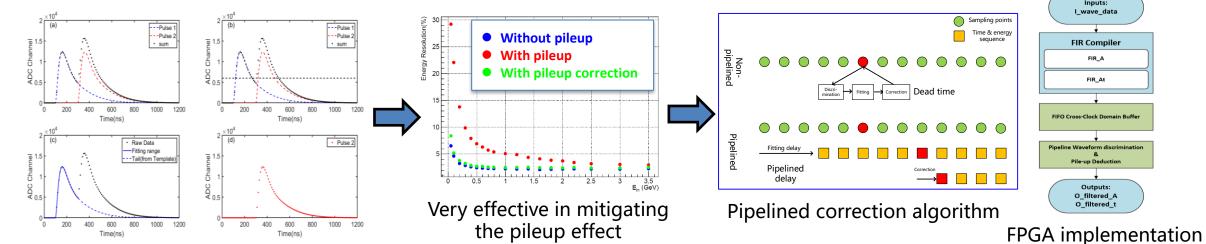
BTOF: DTOF in Barrel (new baseline for barrel PID)


- Design of a barrel PID detector based on the DTOF technology is available (BTOF)
 - 12 sectors with 2 modules placed longitudinally in each sector, 24 quartz plates in total
 - Quartz plate parameters : R = 875mm H = 20mm L = 1350mm D = 450mm
 - Inner side of a quartz plate is coated with light absorbing layer while the outer side is equipped with 15 SiPMs for readout
- Performance with full simulation mostly meets PID requirements. Ongoing effort to optimize the design by scanning a variety of key parameters
- A full-length BTOF prototype has been built and tested with particle beams



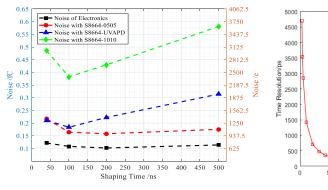
Electro-Magnetic Calorimeter: EMC

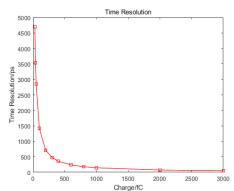
- A crystal calorimeter using pCsl (short decay time of 30ns) to tackle the high background rate (~1 MHz/crystal)
 - Crystal size: 28cm (15X₀), 5×5cm²
 - Defocused layout: 6732 crystals in barrel, 1938 crystals in endcaps
 - 4 large area APDs to address low light yield: 4×(1×1cm²)



A very low light yield of 3.6% for pCsI → a major R&D task : enhance the light yield of a pCsI unit

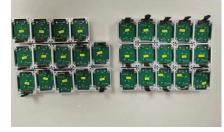
EMC: Pileup Mitigation and Electronics


■ Significant pileup in EMC in the presence of beam background (~1 MHz/ch). A dead-time free pileup correction algorithm involving waveform fitting based on pipelined optimal filtering has been developed and implemented in FPGA

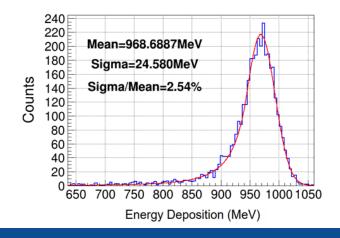


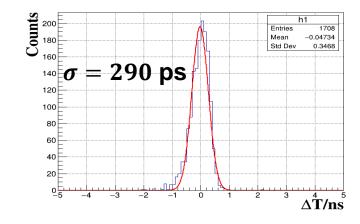
Development of waveform digitization electronics (CSA + shaper + ADC)

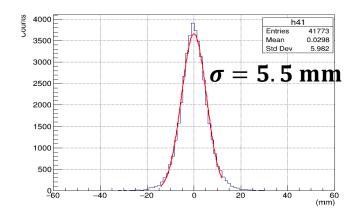
- Dynamic range3 MeV ~ 3 GeV
- ENE: ~ 0.5 MeV
- Time resolution< 150 ps@1GeV


5×5 pCsl EMC Prototype

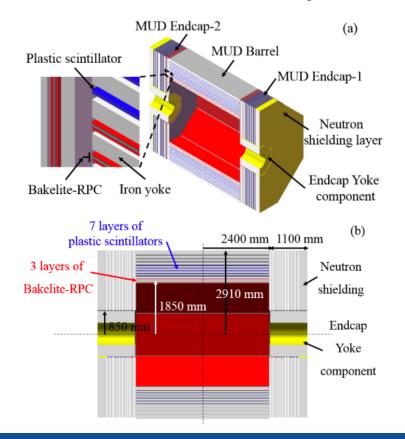
EMC prototype in the making





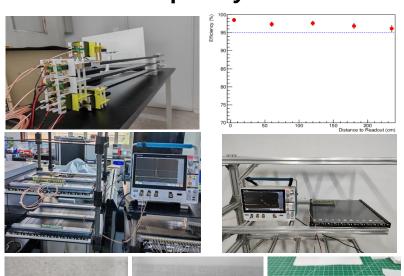

Beam test at CERN PS

Performance from the beam test with 1 GeV/c electrons



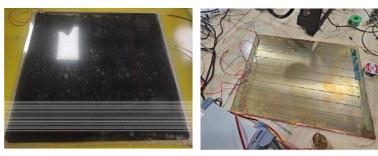
Muon Detector

- A hybrid design with RPC and scintillator strips for optimal overall muon and neutral hadron identification performance
 - RPC for inner 3 layers: not sensitive to background
 - Scintillator for outer 7 layers: sensitive to hadrons



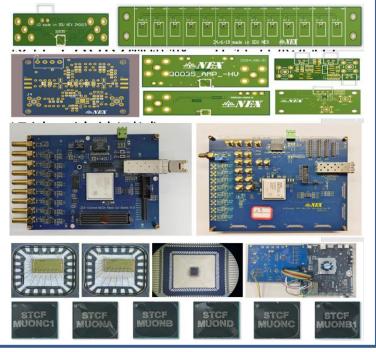
Parameter	Baseline design
R _{in} [cm]	185
R_{out} [cm]	291
R_e [cm]	85
L_{Barrel} [cm]	480
T_{Endcap} [cm]	107
Segmentation in ϕ	8
Number of detector layers	10
Iron yoke thickness [cm]	4/4/4.5/4.5/6/6/6/8/8 cm
$(\lambda = 16.77 \text{ cm})$	Total: 51 cm, 3.04λ
Solid angle	$79.2\% \times 4\pi$ in barrel
	$14.8\% \times 4\pi$ in endcap
	$94\% \times 4\pi$ in total
Total area [m ²]	Barrel ~717
	Endcap ~520
	Total ~1237

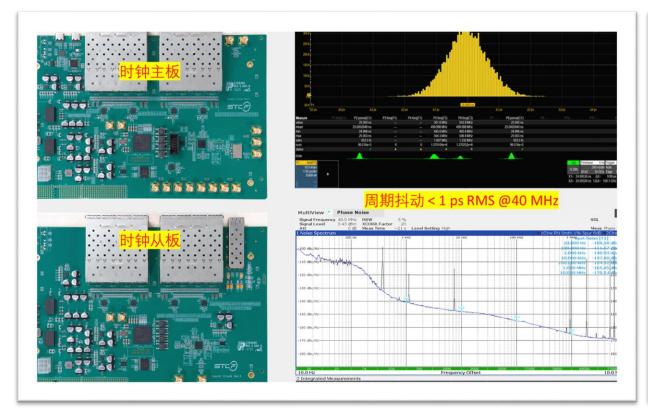
MUD R&D

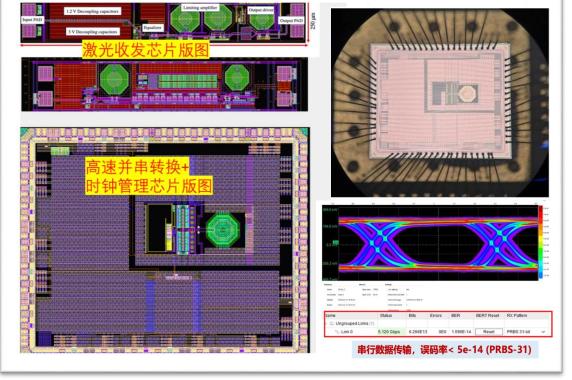

Scintillator strip + WLS + SiPM

- Design and fabrication of the scintillator unit: reflector, fiber groove, optical coupling, surface processing.
- Fabricated 2.4 long scintillator units (efficiency>95%) and a 50×50 cm² scintillator strip array

Glass RPC

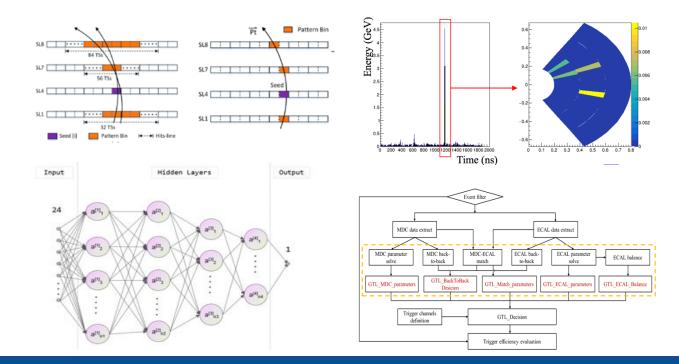

- Developed glass RPC fabrication techniques and built a 40×40 cm² glass prototype.
- Focusing on low-resistivity glass RPC for high count rate capabilities. Built some small prototypes.


Readout Electronics


- Developed front-end amplifiers and readout boards. Tested with detector prototypes.
- Designed front-end ASICs for different input capacitance and gains. Prototype chips being tested

Clock and Data Transmission

- Clock distribution system providing precise and stable clock signals with jitter < 5ps RMS
- High-speed serial data transmission: a GBTx-like ASIC, ADTC, uplink ~5Gbps

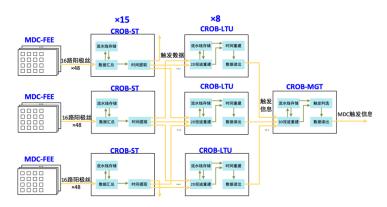


- Completed the design and test of clock distribution modules in a "master-slave" architecture
- Clock jitter tested ~1ps RMS
- joined the upcoming combined beam test

 Designed SerDes and clock managing modules in ADTC, and optical modules. Chips received and tested

Trigger: Algorithms Studies and Development

- STCF trigger scheme: L1 (MDC, ECAL and global trigger) + HLT
- L1-MDC trigger algorithms: 2D track reconstruction (track finding and parameters (pt, θ , φ , t) estimation) using pattern matching, 2D short-track reconstruction incorporating stereo layers using NN, Z impact parameter estimation using NN
- L1-ECAL trigger algorithms: overlapping events resolving, cluster reconstruction and splitting (E, θ , ϕ , t)
- L1 global trigger: track and cluster matching, event T0 estimation, trigger menus for charged and neutral channels
- HLT: currently focusing on MDC HLT aiming to remove noise hits and reduce event size

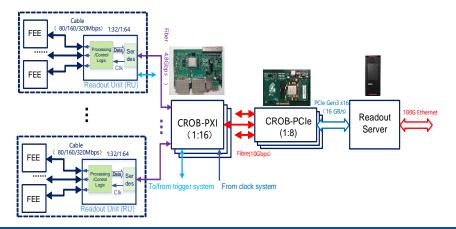


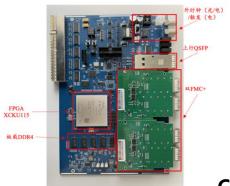
Background trigger rate < 50 kHz

Trigger channel	Physics signal	Energy point	Background trigger rate(kHz)	Signal trigger rate
	e+e> π+π-Jpsi; Jpsi -> e+e-	4.26GeV		99.7%
	$e^+e^> \pi^+\pi^- Jpsi; Jpsi -> \mu^+\mu^-$	4.26GeV		99.8%
	е+е> т+ т-	4.26GeV		98.2%
	e⁺e⁻-> π⁺π⁻Jpsi; Jpsi -> Λ ⊼	3.097GeV		99.0%
带电道	e+e> π+π-Jpsi; Jpsi -> Ξ Ξ	3.097GeV	43.3	99.1%
	e+e> K+K-Jpsi; Jpsi -> I+l-	4.682GeV		100%
	$e^+e^- \rightarrow D_0 \overline{D_0}$	3.773GeV		100%
	e+e> D+ D-	3.773GeV		100%
	e+e> D _s + D _s -	4.04GeV		100%
	Jpsi -> inclusive	3.097GeV	46.6	97.7%
	J/psi-> gam invisable	3.097GeV		99.7%
	e+e> n nbar	3.097GeV		97.6%
中性道	e+e> gam n nbar	3.097GeV	39.4	99.7%
	e+e> gam n nbar(ISR)	3.713GeV		93.1%
		4.26GeV		98.4%

Trigger: Hardware Development

- Design of trigger hardware architecture. Development of various core trigger hardware components (CROB-ST, CROB-LTU, CROB-MGT/EGT, CTM, FMC ...) . FPGA implementation of L1 trigger algorithms.
- A prototype L1 trigger system has been designed and built to demonstrate the trigger system design and its performance. An event simulator has been developed to generate pseudo data for the prototype trigger system.
- The prototype system has participated in the recent combined beam test at CERN



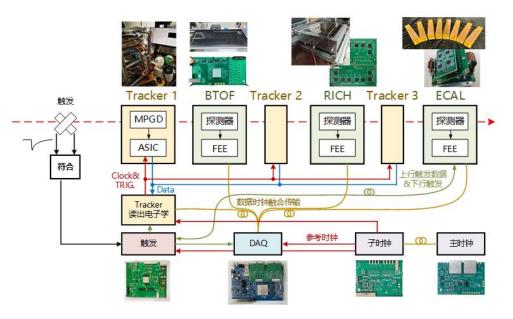

DAQ Design and Development

- System architecture based on Data-Matrix: flow processing, hetero-computing, standard interfaces and protocols, global pipeline
- Software and firmware development
- Development of core electronics boards: CROB-PXI, CROB-PCIe, FMCP optical interface board
- System testing and performance evaluation using simulation data
- A prototype DAQ system has participated in a recent combined beam test

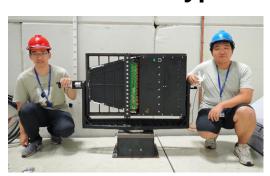
CROB-PXI board

FMCP optical interface board

CROB-PCIe board



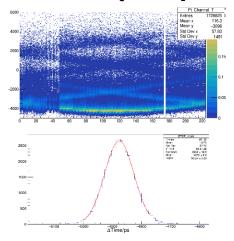
Test of event building


- 12 rack servers
 - 9 servers: readout+ 4 event builders
 - 3 servers: 4 event builders
- 33 simulated data sources
- 17 big-frame sources: 20~32kB/frame
- 16 small-frame source: 135 Byte/frame

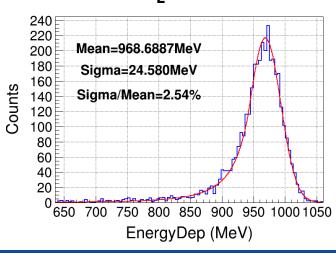
Combined Beam Tests

Two test beam campaigns for combined systems (ITK, RICH, DTOF, EMC, Clock, Trigger, DAQ)

DTOF Prototype

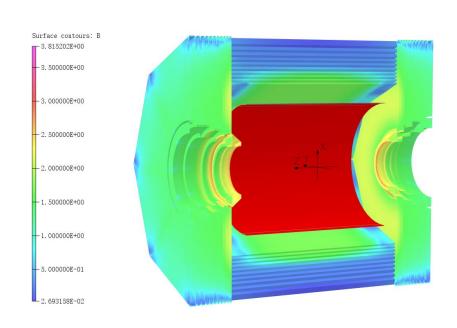


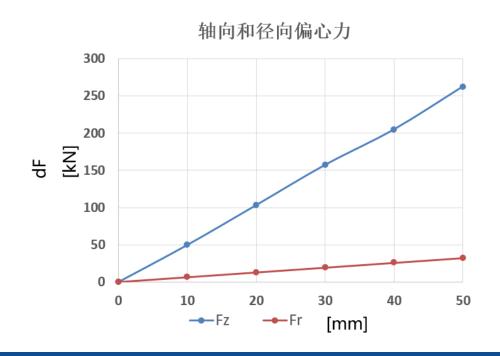
EMC Prototype



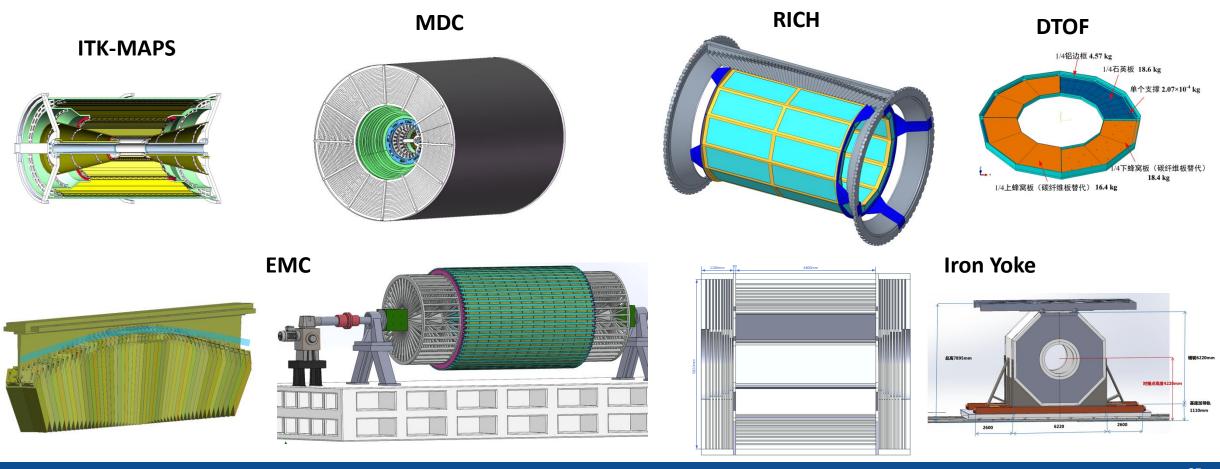
CERN PS T9 beam line (Aug. 2025 & Oct. 2025)

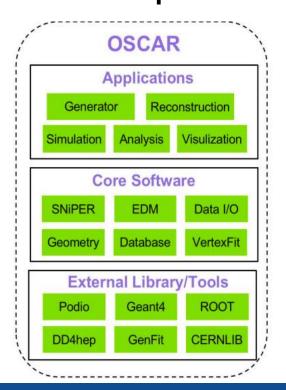
DTOF: $\sigma_t \sim 25 \text{ ps}$




EMC: $\sigma_{\rm F}/E \sim 2.5\%$

Super-conducting Solenoid Magnet

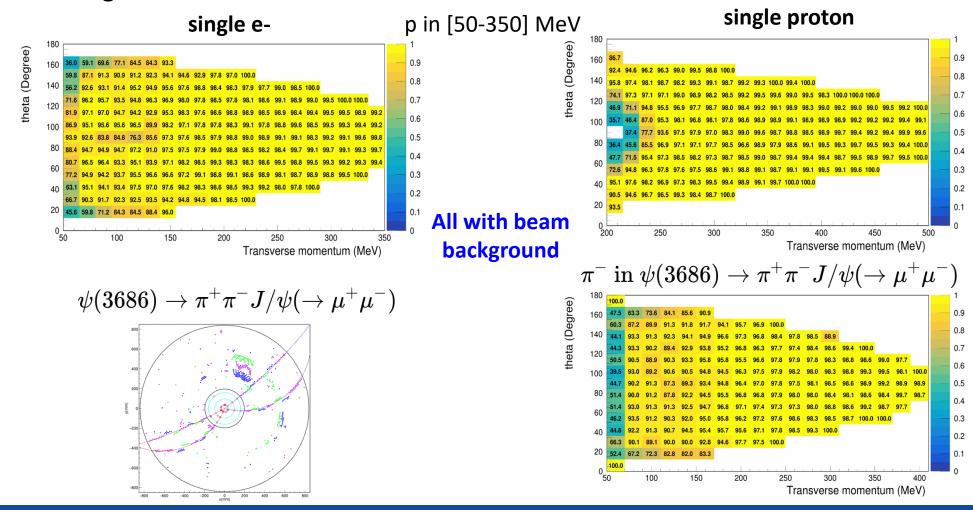

- Optimized the physics design of the magnet by performing FEA of magnet field and unbalanced forces.
- Studied impact of non-uniformity of the magnetic field on tracking performance and solutions to improve magnetic field homogeneity.
- Designing the magnet support structure using carbon fiber. Investigating heat leakage issue.
- Studying cryogenic forced circulation and thermosiphon schemes with FEA.


Detector Mechanical Design

- **■** Detector conceptual design has been transferred into engineering drawings
- **■** Engineering design available for each sub-detector or system
- Design studies on detector assembly and installation

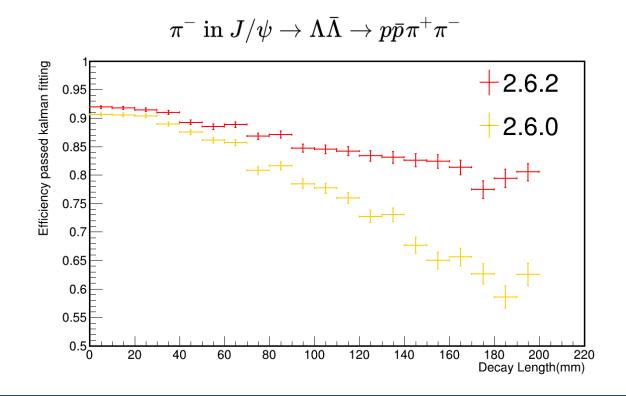
Offline Software and Full Simulation

- The full chain of event generation, full simulation, digitization, reconstruction and analysis
 has been established in the STCF offline software framework, OSCAR, for detector and
 physics studies. Full-simulation data production has been launched for detector
 performance validation and optimization, and TDR physics studies.
- Software and algorithms (simulation, digitization, reconstruction, PID ...) continue to improve on both precision and resource demand (CPU, disk).

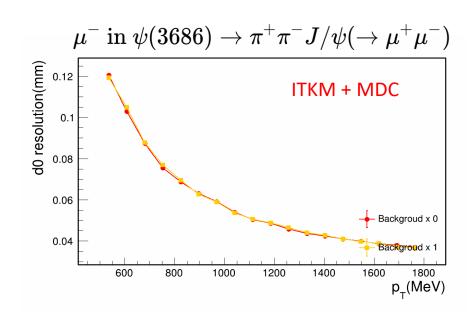


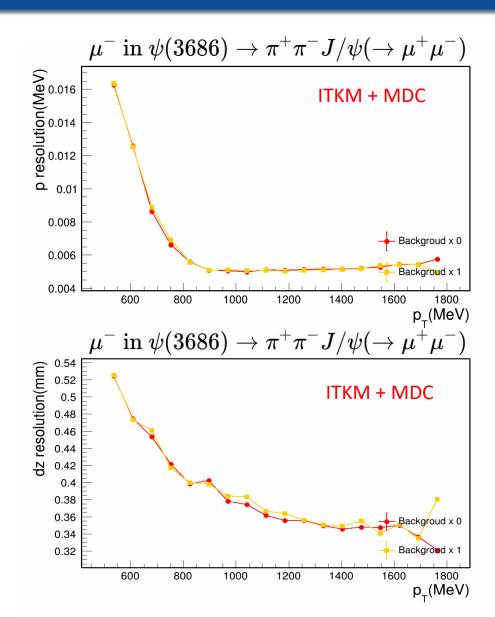
					Under develop	oment
Detectors	Simulation	Digitization	Reconstruction		Analysis tools	
				Global PID	Traditional combined PID	Kinematic& Vertex Fit
ITK	(S				
MDC	⊘	\bigcirc	Ø			
RICH	>		>	Charged tracks:		
DTOF	(⊘	>	lidene.		
BTOF	(S	>	Neutral tracks:		
EMC	Ø	⊘	Ø			
MUD	Ø	Ø	⊘			

Under optimization

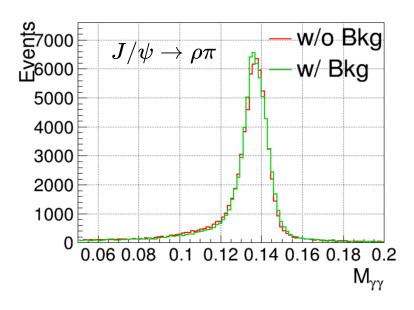

Tracking Efficiency for Prompt Tracks

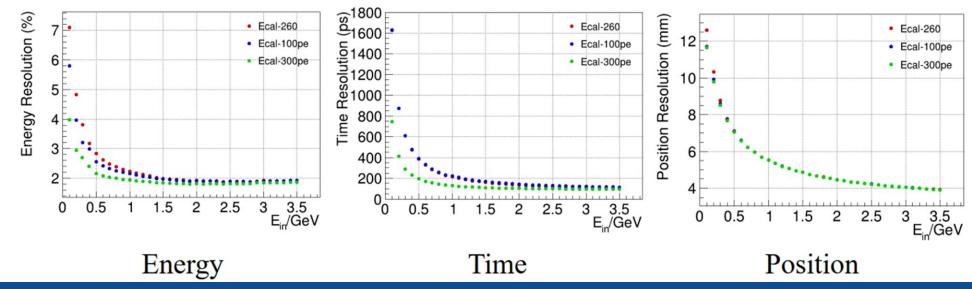
• Tracking performance for prompt tracks has been well consolidated with > 90% tracking efficiency for p_T > 75 MeV for both single particles (e, μ , π) and particles in physics events in the presence of beam background.


Tracking Efficiency for Displaced Tracks

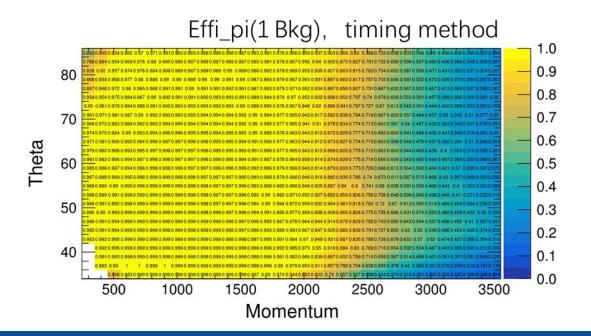

- Much improved performance for long-lived particles (Lambda, Xi) produced even in a complex scenario with low pT and displaced tracks
- Reconstruction of displaced tracks has been addressed by using additional Hough transform that takes a displaced segment position as the reference point.
- >80% tracking efficiency for particles with decay length up to 200 mm

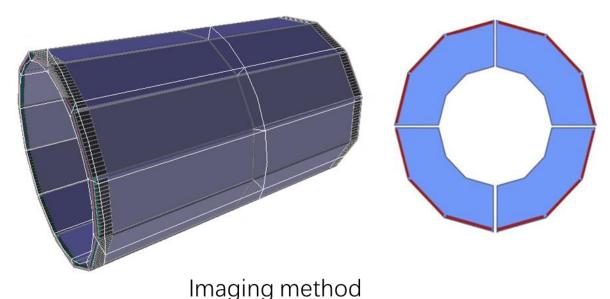
Momentum and Impact Parameter Resolution

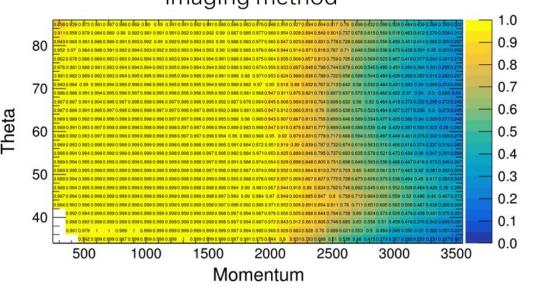

- Momentum resolution is ~0.5% at p_T = 1 GeV/c
- Resolution of impact parameters, d0 and z0, can reach 40 um and 350 um for p_T > 1.5 GeV/c



Photon Performance

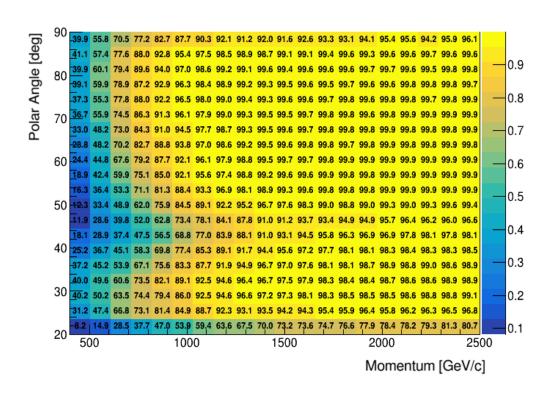

- EMC digitization algorithm has been optimized with 50% reduction of CPU time
- Using realistic digitization parameters from beam test results
- Incorporated time in the EMC clustering algorithm to improve photon resolution against beam background
 - No degradation on pi0 resolution in the presence of beam background

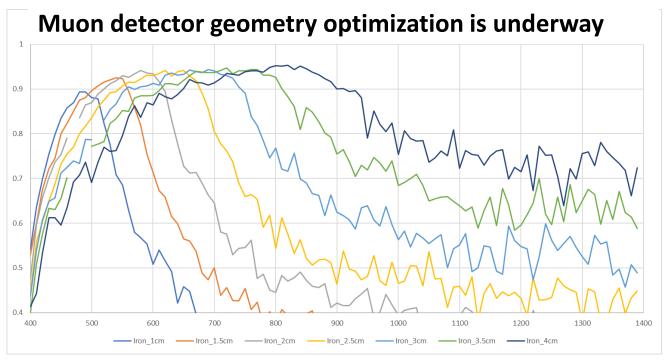


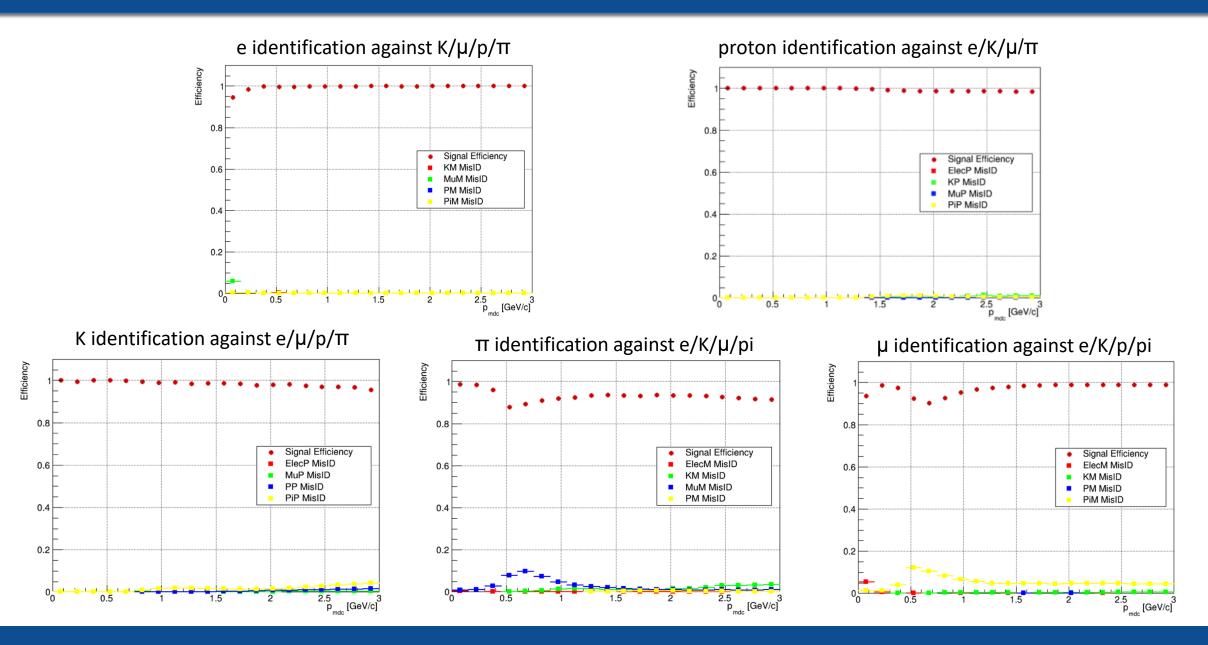


π/K PID Performance (BTOF&DTOF)

- Developed the full simulation, digitization and reconstruction chain for BTOF and DTOF.
- The performance fulfills the STCF requirement (>97% π eff @ K mis-ID=2% at 2 GeV/c)
- BTOF and DTOF geometries are being optimized to further improve its PID performance






μ/π PID Performance (MUD)

- μ/π identification using BDT on full simulation and realistic digitization
 - μ efficiency is above 95% @ π suppression = 30 with momentum above 1 GeV in barrel region
- Identfication of neutral hadrons (n, K_L) against photon is being optimized

Global PID Performance

International Collaboration and Exchanges

LHCb TORCH team

CERN thin film workshop

CERN GDD

KEK accelerator experts

BINP accelerator experts

BINP management

JINR detector experts

CERN accelerator experts

Signed MoU for collaboration with BINP, JINR, IJCLab, KEK

THE UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHIN

THE BUDKER INSTITUTE OF NUCLEAR PHYSICS, RUSSIA

University of Science and Technology of China ("USTC" iblic institution specializing in science, engineering, and technological research in C located at No. 96, Jinzai Road, Baohe District, Hefei city, China, Zip code 230026,

COOPERATION AGREEMENT

BETWEEN THE JOINT INSTITUTE FOR NUCLEAR RESEARCE (JINR, DUBNA, RUSSIAN FEDERATION)

THE UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA (USTC, HEFEL PEOPLE'S REPUBLIC OF CHINA)

of Science and Technology of China (USTC), represented by its President, hereinafter referred to

The purpose of this Agreement is to provide a framework to enable the Parties to organize and further develop their scientific and technical co-operation and academic exchange on the basis of reciprocity.

- theoretical physics:

- experimental particle physics:

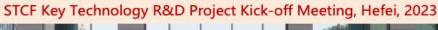
as the Parties, have agreed as follows

research and development of particle detectors and readout elec-

project in China and the SPD experiment at the NICA collider (JINR). Results from joint R&D projects may have applications beyond those stated above. Additional areas of collaboration may be defined through mutual agreement by the Parties.

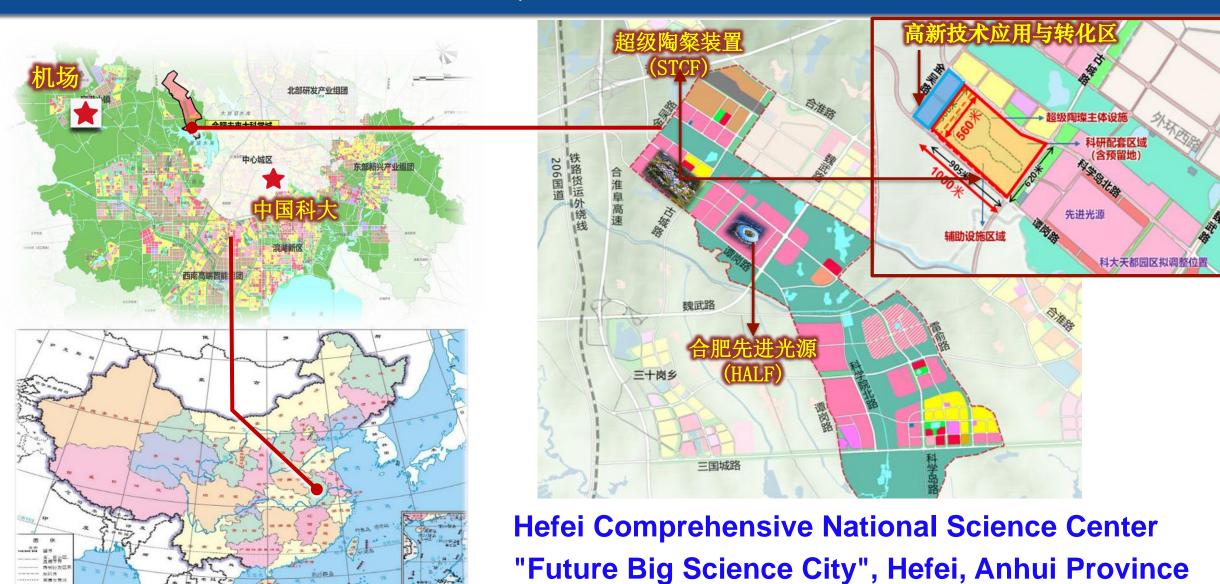
International Workshops on Future Tau-Charm Facilities

Time	Place	Content
2015.01	Hefei, China	International Workshop focused on Super tau-Charm Facility in China
2018.03	Beijing, China	International Workshop focused on Super tau-Charm Facility in China
2018.05	Novosibirsk, Russia	International Workshop focused on Super tau-Charm Facility in Russia
2018.12	Paris, France	1 st FTCF (Joint International Workshop)
2019.08	Moscow, Russia	2 nd FTCF
2020.11	Online, China	3 rd FTCF
2021.11	Online, Russia	4 th FTCF
2024.01	Hefei, China	5 th FTCF
2024.11	Guangzhou, China	6 th FTCF


STCF Workshops and Meetings

(National) STCF Workshops

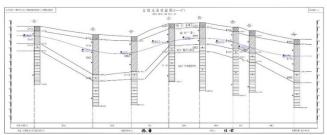
Time	Place	Content
2018.10	Hengyang (USC)	STCF
2019.03	Beijing (UCAS)	STCF: Physics
2019.07	Hefei (USTC)	STCF: Accelerator
2019.08	Hefei (USTC)	STCF: Phys. & simulations
2019.11	Beijing (UCAS)	STCF: CDR
2020.08	Hefei (USTC)	STCF: From CDR to TDR
2022.12	Guangzhou (SYSU)	STCF: R&D kick-off
2023.07	Zhengzhou (ZZU)	STCF: Collaboration
2024.07	Lanzhou (LZU)	STCF: 15 th -five-year plan

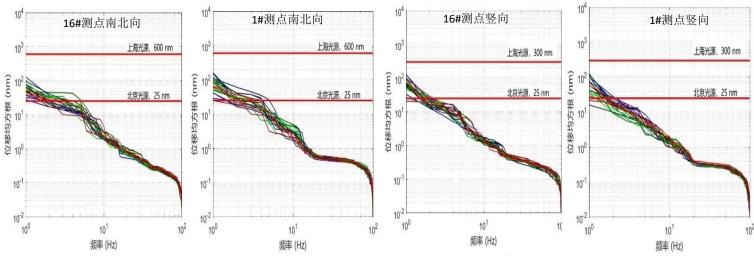


STCF Project Development Meetings

Time	Place	Meetings
2022.04	Hefei (USTC)	STCF Key Technology R&D Project Demonstration Meeting
2023.08	Hefei (USTC)	STCF Key Technology R&D Project Kick-off Meeting
2023.12	Hefei (USTC)	STCF Key Technology R&D Project Budget Review Meeting
2024.01	Hefei (USTC)	STCF 1st International Advisory Committee Meeting
2024.05	Hefei (USTC)	STCF 1st National Consultative Committee Meeting

Site: Hefei, Anhui Province




Geological Survey and Civil Engineering Design

Final Remarks

- As a key player in HEP precision frontier, STCF holds great potential for discoveries and breakthroughs in studies of strong interaction, CPV, and new physics search.
- STCF builds upon China's great success and well-established unique international position in tau-charm physics, constituting a viable near-term HEP project in China.
- Intensive conceptual design studies in the past few years have resulted in physics, detector and accelerator CDRs.
- The STCF project has transitioned to the technology R&D phase. A comprehensive STCF R&D project has been established and is being vigorously executed. Significant progress in the R&D has been made and some systems have reached milestones.
- The STCF project has passed the recent CAS review and the project proposal has been submitted to the national government for starting STCF construction in the 15th fiveyear plan period.
- It is crucial to strengthen and expand domestic and international collaboration and explore synergies with other projects.