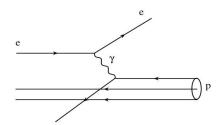
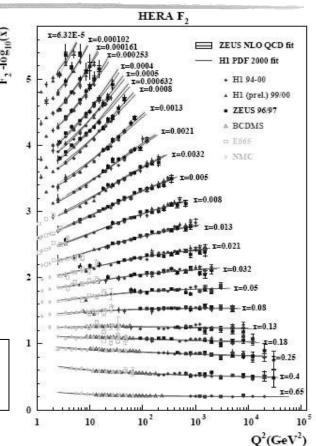
Probing gluon saturation

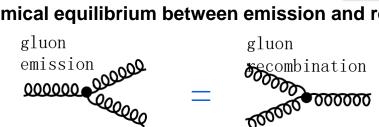
the Forward Calorimeter in ALICE

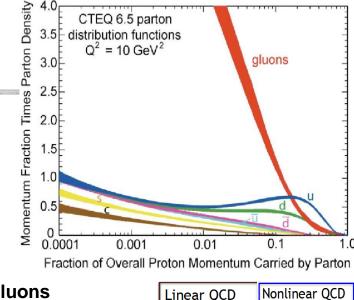

Dieter Roehrich University of Bergen


QCD matter - proton

- What is inside a proton?
- Deep-inelastic electron-proton scattering -> elastic electron-quark scattering -> parton model

- Cross-section
 -> structure functions F₁, F₂
 -> parton distribution function
- Bjorken x: fraction of the proton momentum carried by the parton (in a frame where the proton is ultra-relativistic)

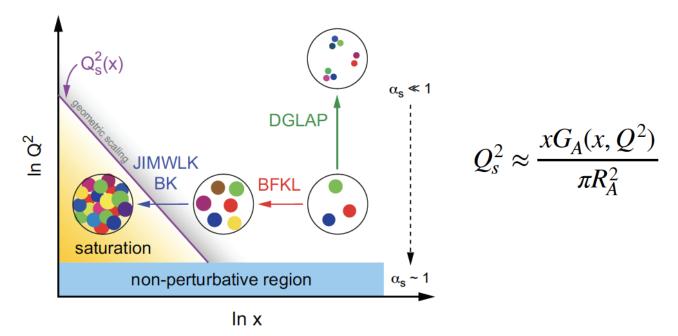

Q²: momentum transfer



Gluons

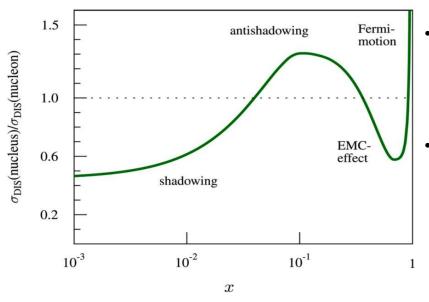
Parton Distribution Function

- QCD at low x:
 - parton splitting is described by linear equations: BFKL equation (as well as DGLAP evolution)
 - At high enough gluon densities gluons would also recombine
 - described by BK/JMWLK equations
- Gluon saturation
 - dynamical equilibrium between emission and recombination



Linear OCD BK/JMWLK BFKL: gluon gluon emission recombination 000000 \sim

QCD matter – gluon saturation


Onset of saturation effects: saturation scale Q²_s

The effective theory to describe this saturated gluon field:
 Color Glass Condensate (CGC)

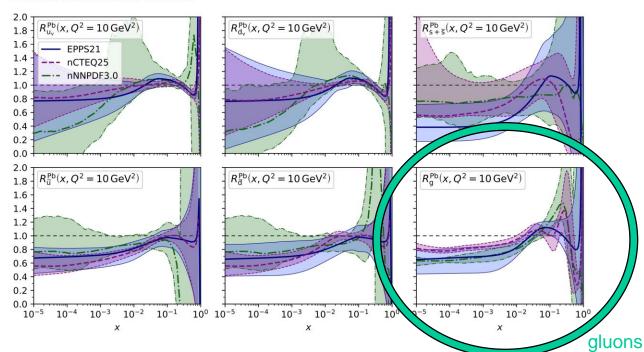
QCD matter - nuclei

 Nuclei are not a collection of free protons and neutrons nuclear shadowing

- Experimental observation: parton distributions are different for protons and nuclei
- What is the mechanism responsible for shadowing?

Gluon saturation?

• saturation scale Q²_s is modified in nuclei:


$$(Q_s^A)^2 \approx cQ_0^2 \left[\frac{A}{x}\right]^{1/3}$$

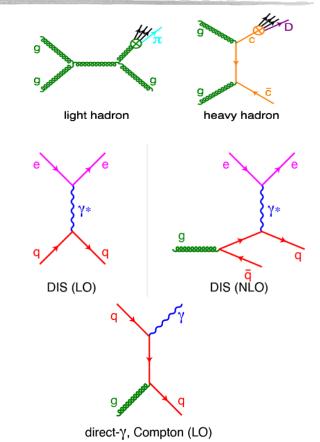
QCD matter - nuclei

Nuclear PDFs for Pb – state-of-the-art

A. Kusina, IS 2025

Nuclear modification for lead

A probe for gluon density – direct photons

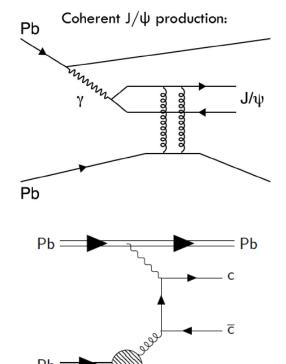

Hadronic observables

interpretation inconclusive

• Electromagnetic probes

- Deep-Inelastic Scattering (DIS)
 - » classical PDF method
 - » not sensitive to gluons at LO
 - » gluons from NLO

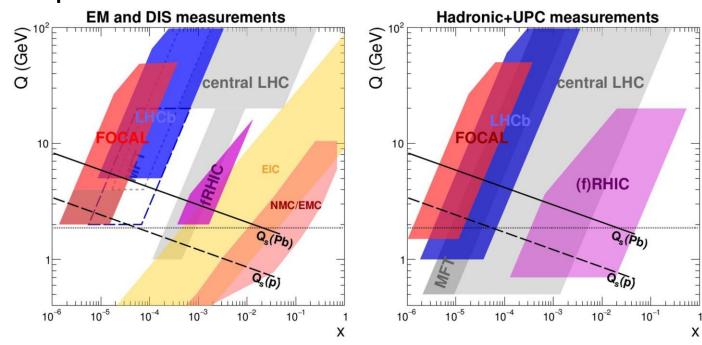
- Photon production in hadronic collisions
 - » sensitive to gluons at LO

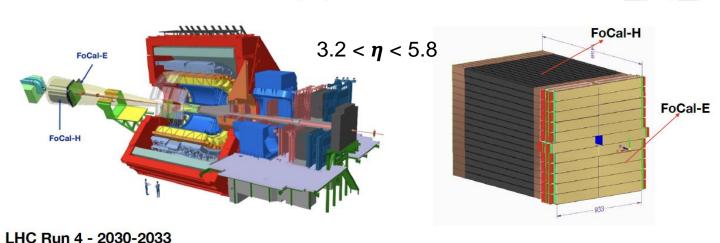


Probes for gluon density - UPCs

• UPCs

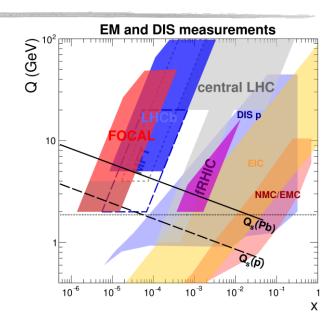
Photoproduction of vector mesons


Charm production in photonuclear interactions

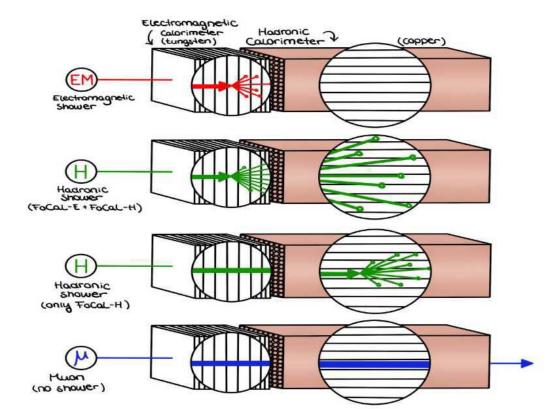

- ...

The Q-x experimental landscape

Exploration of nuclear PDFs



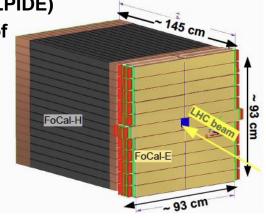
• FoCal at ALICE will explore a unique low-x regime reaching x~10-6
in nuclear collisions - p+p and pPb - at the LHC


very forward calorimeter consisting of two parts, an electromagnetic calorimeter (FoCal-E) and a hadronic calorimeter (FoCal-H) located 7m from the IP of ALICE

- Main physics goal: Explore non-linear QCD in regime of saturated gluons at low Bjorken-x and constrain nPDFs
- FoCal capabilities allow explorations of gluon saturation using a multimessenger approach:
 - prompt photon production
 - □ γ-hadron correlations
 - production of π^0 and η vector mesons
 - jet measurements (e.g. dijet production)
 - vector meson photo-production in Ultra-Peripheral Collisions (UPC)
 - · ... and more ...

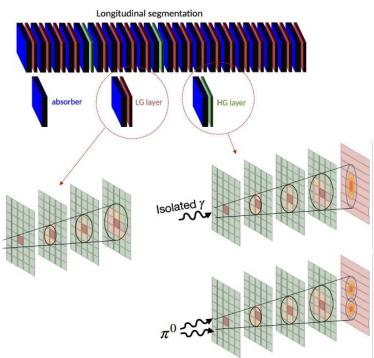
FoCal acceptance allows to reach $x^{\sim}10^{-6}$, complementing searches for gluon saturation at current and future facilities

ECAL: sandwich/shashlik type - HCAL: spaghetti type


sampling calorimeter

- FoCal-E (electromagnetic):
 - high-granularity Si-W sampling calorimeter combining two readout granularities:
 - 18 pad layers with silicon pads (1x1 cm²)

two pixel layers with digital readout (ALPIDE)


 ability to "track" longitudinal component of shower

- used to measure photons and π⁰
 (40 μm position resolution)
- FoCal-H (hadronic):
 - conventional metal-scintillator hadronic calorimeter behind FoCal-E
 - scintillation fibres embedded in Cu sheets
 - used to measure photon isolation, jet energy etc.

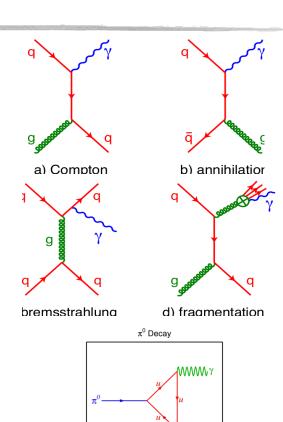
ALICE

Detector concept - FoCal-E

FoCal-E modules assembly

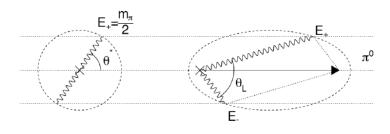
Tisidori, Quark Matter 2025: XXXI International Conference on Ultra-relativistic Nucleus-Nucleus Collisions

FoCal – experimental challenges


Signal

Single isolated photons at forward rapidity

Background


Isolation from hadronic activity/jets

• Discrimination of π^0 decay into two γ

FoCal – experimental challenges

Opening angle between photons from π^0 decays:

 $heta_L \sim rac{2}{\gamma} \sim rac{2m_\pi}{E_\pi} \sim rac{2m_\pi}{p_T \cosh(\eta)}$

Rest Frame

Lab Frame

π^0 kinematic range:

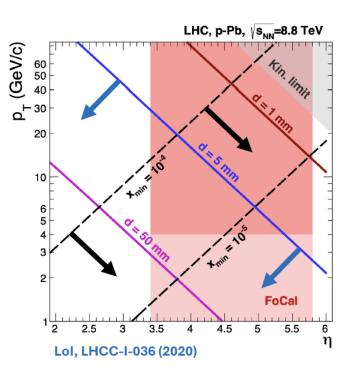
$$1 < p_T < 20 \text{ GeV/c}$$

 $3.4 < \eta < 5.8$

At FoCal rapidities:

$$15 < E_{\pi} < 3300 \, \text{GeV}$$

 $0.005^{\circ} < \theta_L < 1.25^{\circ}$


FoCal 7 m from IP:

Distance between clusters $0.06 < d_L < 15 \, \mathrm{cm}$

Dynamic range for clusters from ~10 GeV up to ~1 TeV. Cluster separation down to mm scale.

FoCal – experimental challenges

Summarizing kinematical targets (using π^0 decays):

Neutral pion decay:

$$\pi^0 \rightarrow \gamma + \gamma$$

Minimum cluster distance d_{min}

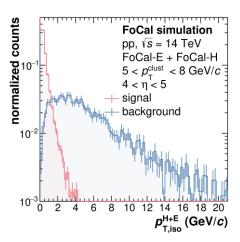
$$p_T < \frac{4 \times (7 \text{ m})}{d_{min}} m_{\pi} e^{-\eta}$$

Desired x – scale

$$p_T < \frac{x_{min}\sqrt{s}}{2}e^{+\eta}$$

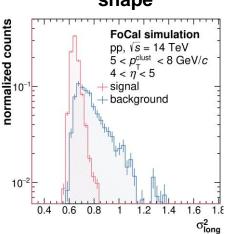
Direct photon production – the key observable

• R_{pPb} : forward π^0 , γ $p + Pb/p + p \rightarrow \gamma + X$, $\sqrt{s} = 8 \text{ TeV}$ $p + Pb / p + p \to \pi^{0} + X$, $\sqrt{s} = 8 \text{ TeV}$ 1.1 1.2 1.0 1.1 LO Dipole-CGC calculation Ducloue et al. arXiv:1710.02206 1.0 0.9 π^0 $R_{
m pA}$ ₽ 0.9 24 0.9 isolated y 0.8 0.8 0.70.7 8 2 3 5 6 7 k_T [GeV]

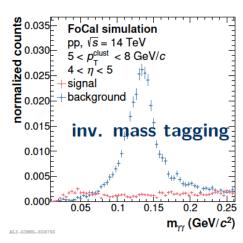

 k_T [GeV]

- Significant difference in low p_T suppression between π^0 and direct γ
- Different production channels have different sensitivity to saturation
 - prompt photons directly produced in hard scattering qg -> yq
 - sensitivity to gluon distribution and no strong interaction in final state
 - Direct photons: $k_T \sim Q_{sat}$ vs π^0 : $p_T >> Q_{sat}$

Identifying direct photons with FoCal

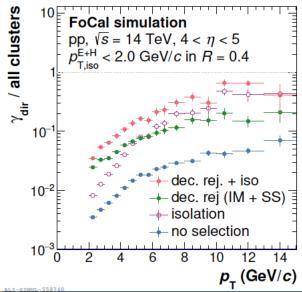

 measurement of isolation energy in FoCal-E and FoCal-H

isolation

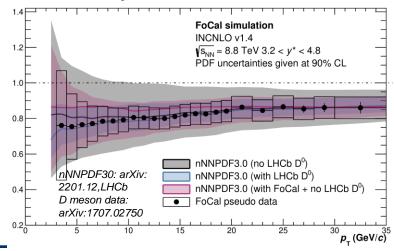


 EM shower shape in 20 layers

shower shape

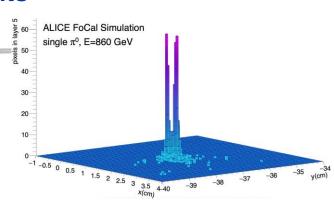


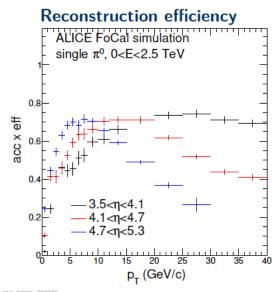
separation of showers from dominant neutral pion decay background



Measurement of direct photon production

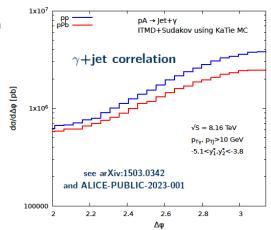
 isolation + shower shape selection + invariant mass tagging allow to increase signal fraction by about factor 11 up to 70% at p_T=14 GeV/c

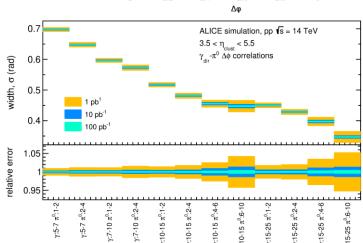



- nPDF+NLO R_{pA} re-weighted using FoCal pseudo data
- reduction of nNNPDF30 uncertainties similar to LHCb D mesons
- strong nPDF constraints at forward rapidities
- multi-messenger approach: different sensitivity to final state effects

Neutral meson measurements

- various studies using simulated data and FoCal geometry in GEANT demonstrate FoCal capabilities to measure neutral mesons
- expected luminosities for Run 4 sufficient to measure over a large energy range of up to 2 TeV, also differentially in rapidity
- highly granular pixel layers allow for efficiencies of up to 80%, even for a photon separation of < 5 mm!

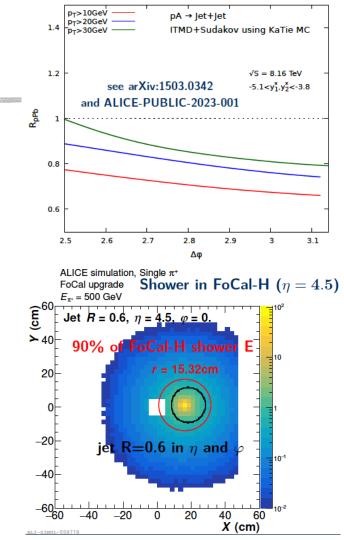

Measurement of gamma-hadron correlation


gamma-hadron correlations

- offers additional sensitivity to low-x gluon dynamics
- expectation of yield suppression and decorrelation due to saturation effects

FoCal performance

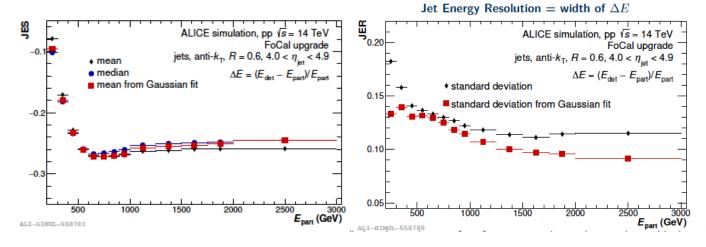
- correlation peak can be measured precisely
- stat. uncertainties of peak width 0.001 rad for expected Run 4 luminosities
- differential measurement feasible in significant number of trigger bins



Jet measurements

Jets

- forward incl. jet, gamma+jet and dijet production sensitive to gluon saturation
- dijet especially interesting -> momentum imbalance k_T probes Q_{sat}
- Kinematic considerations
 - a given jet with resolution parameter R will be squeezed into an increasingly small geometrical space at forward rapidities!
 - effective Moliere radius FoCal-E 1-2 cm, interaction length FoCal-H 15-20 cm

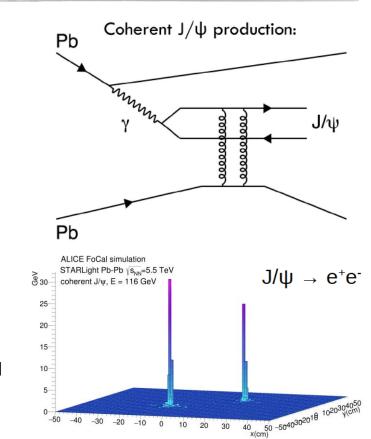


Jet measurements

 Pythia + GEANT studies to quantify FoCal performance for R = 0.6 anti-k_τ jets

$$\Delta E = (E_{\rm det} - E_{\rm part})/E_{\rm part}$$

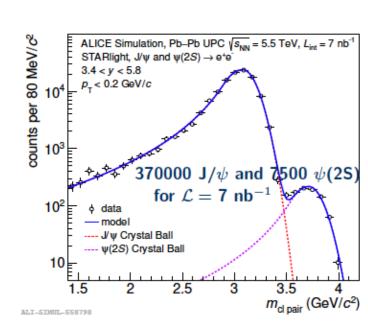
Jet Energy Scale = mean of ΔE



Ultra-Peripheral Collisions with FoCal

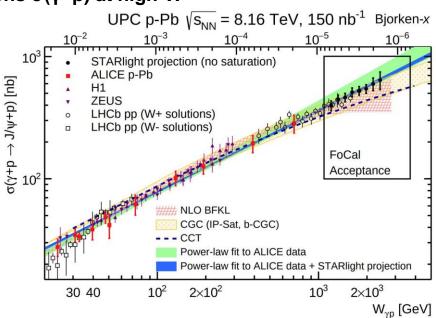
- Quarkonia (J/ψ, ψ')
 photoproduction in p-Pb and
 Pb-Pb collisions
 - UPCs at the LHC probe the hadronic structure over a wide Bjorken-x region, down to 10⁻⁶
 - Extension of photon-Pb and photon-proton cross-sections to very high and very low c.m. energy:

$$W_{\gamma p}^2 = 2E_p M_{J/\psi} e^{\pm y}$$


 Access to gluon distribution and saturation

Vector meson photo-production in UPC

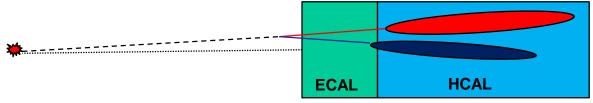
FoCal performance


- FoCal allows to access unprecedented low-x, extending existing measurements to W_{γp} = 2 TeV in p-Pb (Pb-p collisions) + Pb-Pb collisions
- studies with STARLight + GEANT show successful reconstruction of $\psi(2S)$ and J/ψ

Vector meson photo-production in UPC

Photoproduction off protons σ(γ+p) at high-W

 photo-production cross section of vector mesons (e.g. J/psi) in ultraperipheral collisions is proportional to squared gluon density



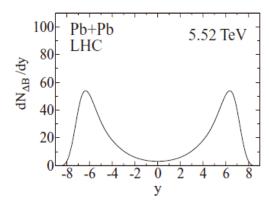
- deviation from power-law growth of cross section with increasing $\mathbf{W}_{\gamma p}$ expected due to saturation effects

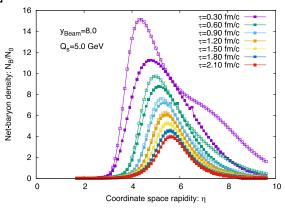
Λ-production at forward rapidities

Detection of Λ+Λ with FoCal

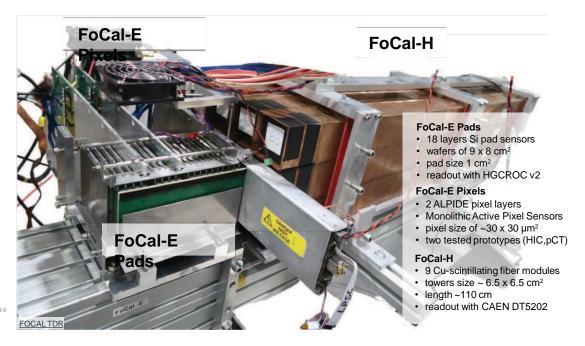
- Charged decay
 - Proton and pion tracking in ECAL -> reconstruction of secondary vertex
 - Position and energy of proton and pion shower in HCAL
- Neutral decay
 - Position, direction and energy of neutral pion shower in ECAL
 - Position and energy of neutron shower in HCAL
- Baryon stopping
- Λ-polarisation

Baryon transport


- Stopping
 - quark di-quark (q-qq) string fragmentation and/or junction anti-junction loops?
 - Saturation models
 - net-baryon fragmentation peak position

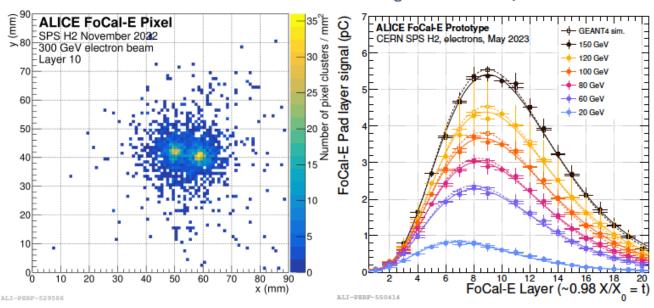

Y. Mehtar-Tani and G. Wolschin, Phys. Rev. C80, (2009) 054905

• baryon density at forward eta


L. McLarren, S. Schlichting, S. Sen, arXiv:1811.04089 (2018)

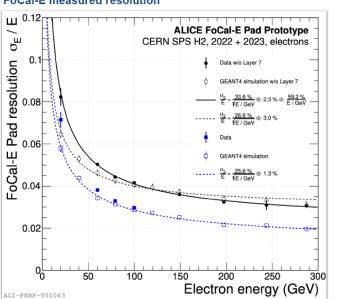
-> gluon saturation scale

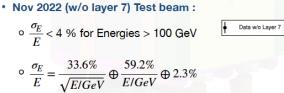
FoCal prototypes and test beam results



ALI-PERF-569144

FoCal prototypes and test beam results – FoCal-E


Longitudinal shower profile in FoCal-E


Prototype performance

$$\frac{\sigma_E}{E} = \frac{a}{\sqrt{E/GeV}} \oplus b \oplus \frac{c}{E/GeV}$$

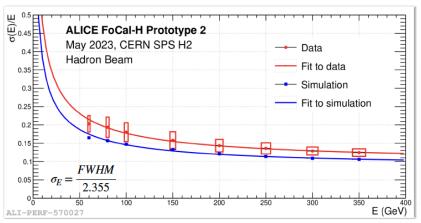
FoCal-E measured resolution

• May 2023 Test beam:
$$\circ \frac{\sigma_E}{E} < 3\% \text{ for Energies} > 100 \text{ GeV}$$

$$\circ 120, 150 \text{ GeV not included in fit}$$

$$\circ \frac{\sigma_E}{E} = \frac{25.6\%}{\sqrt{E/GeV}} \oplus 1.3\%$$
 • Nov 2022 (w/o layer 7) Test beam :

Dataset	$\sigma_{ ext{stoch.}}(\%)$	$\sigma_{ m const.}(\%)$	$\sigma_{ m noise}(\%)$	χ^2	n.d.f.
Data w/o L7	33.6 ± 1.4	2.27 ± 0.10	59.20 ± 35.3	4.4	5
Geant4 simulation w/o L7	26.6 ± 0.9	2.98 ± 0.13	-	4.6	8
Geant4 simulation w L7	25.6 ± 0.5	1.27 ± 0.10	-	5.5	8


Tisidori, Quark Matter 2025: XXXI International Conference on Ultra-relativistic Nucleus-Nucleus Collisions

ALICE

Prototype performance

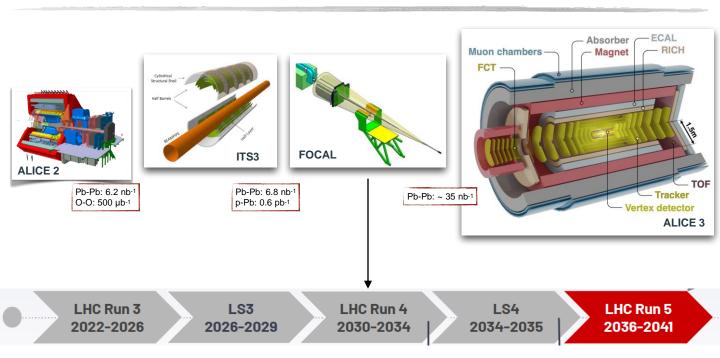
$$\frac{\sigma_E}{E} = \frac{a}{\sqrt{E/GeV}} \oplus b \oplus \frac{c}{E/GeV}$$

FoCal-H measured resolution

•	Results	compared	with	simulations

- channel-by-channel light Coll. Efficiency spread
- resolution < 20 % for hadrons > 60 GeV
- o resolution ~10 % for hadrons > 150 GeV

Systematic effect	$\Delta \sigma_{ m stoch.}$	$\Delta \sigma_{\rm const.}$
Fit range	0.02	0.001
Line shape	0.10	0.005
HG-LG matching	0.05	0.003
Gain choice	0.20	0.002
Global energy scale	0.04	0.003
Total (added in quadrature)	0.22	0.007


Resulting parameters:

$$\circ \sigma_{stoch.} = (148 \pm 2_{stat} \pm 22_{syst}) \%$$

$$\circ \sigma_{const.} = (10.0 \pm 0.13_{stat} \pm 0.7_{syst}) \%$$

 \circ σ_{noise} compatible with 0

ALICE Upgrade Roadmap

This is the end