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A bit of history: discovery of subnuclear particles
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they cannot all be “elementary”...

... or can they?



Statistical Bootstrap and Hagedorn Temperature

● very elegant idea: 

○ hadrons are made of hadrons which in turn are made of hadrons which in turn...

○ no fundamental hadron (“nuclear democracy”)

○ very popular in the sixties (pre-quarks)

(very much “sixties”, in fact: F Capra takes the idea and runs away with it in “The Tao of Physics”)

● pioneered by Geoffrey Chew (UC Berkeley)
○ e.g.: G. Chew (1962). S-Matrix theory of strong interactions. New York: W A Benjamin

● developed by Rolf Hagedorn (CERN) into a full-fledged theory of strong interactions
○ e.g.: R Hagedorn: Statistical thermodynamics of strong interactions at high energies 1965 Nuovo Cim. Suppl. 3 147

● very successful in calculating hadronic collision cross sections
○ e.g.: H Grote, R Hagedorn and J Ranft, Atlas of particle spectra, CERN-report (1970)

○ calculated based on hadron exchange → need to know spectrum of all existing hadrons
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Spectrum of hadron masses

● spectrum of hadrons from “bootstrap equation”:

○ exponential growth of number of hadrons at higher and higher masses!

○ controlled by “Hagedorn temperature”, TH ~ 150-160 MeV

● btw, still holds: very similar results from lattice QCD
○ e.g.: A Majumder, B Müller, PRL 105:252002,2010 

○ that’s why bootstrap theory worked well for hadron interactions!

(the idea was very deep, even if the picture was not the correct fundamental one!)
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green: states known in 1967

red: states known by mid-1990’s
blue: expected spectrum for TH = 158 MeV



Hagedorn temperature: a limiting value?
e.g. following K Redlich, H Satz in “Melting Hadrons, Boiling Quarks”, J Rafelski ed (Springer, 2016)

● partition function for a system of non-interacting pions: 

● interactions as resonance formation:

○ interacting system of pions → non-interacting gas of all possible resonances

● inserting Hagedorn’s spectrum:

○ energy pumped into such a system, goes to creating heavier and heavier resonances

○ asymptotically reaching TH

→ TH would then be the maximum possible temperature!
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... but Quarks enter the scene...

● the other main idea proposed in the 60’s to explain the multitude of hadrons

● 1961: “eightfold way” (SU(3) flavour symmetry, Murray Gell-Mann)

● 1965: quark hypothesis (Murray Gell-Mann, George Zweig)

● 1968: observation of “partons” in Deep Inelastic Scattering at SLAC

● 1970: GIM mechanism (Sheldon Glashow, John Iliopoulos, Luciano Maiani)
○ to explain absence of flavour-changing neutral currents

○ proposal of fourth quark (charm) → cancellation of flavour-changing terms

● 1974: discovery of charm (J/𝜓) at Brookhaven and SLAC (+ Frascati 5 days later)

→ quark hypothesis widely accepted, and in 1975...
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1974: Lee and Wick: a key precursor!
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● scalar field Φ 𝑥

● extreme conditions (e.g. high T) → vacuum expectation value Φ may vanish

● → nucleons become effectively massless!



1975, Cabibbo and Parisi: “quark liberation” at high T
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● TH not maximum attainable, simply: for T > TH quarks not confined any more

first phase diagram!



1975, Collins and Perry: “quark soup” in neutron stars?
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the basic argument is contained in only a few lines...
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1978, the name is coined

by E V Shuryak in Yadernaya Fizika 28 (1978) 403: “Kvark-Glyuonnaya Plazma”



Lattice QCD
● the rigorous way of performing calculations in the non-perturbative regime of QCD

● discretisation on a space-time lattice 

○ → ultraviolet (i.e. large-momentum scale) divergencies can be avoided
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[A Bazavov et al. PRD 90 094503 (2014)]

○ around critical temperature (TC): rapid change of

■ energy density 𝜀

■ entropy density s

■ pressure p

○ due to activation of partonic degrees of freedom

○ at zero baryon density → smooth crossover

○ TC = (156.5 ± 1.5) MeV

○ 𝜀 ~ O(GeV/fm3)

[A Bazavov et al. Phys.Lett.B 795 (2019) 15]



The QCD (de-)confinement phase transition
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● origin of nucleon masses

○ 2 mu + md ~ 10 MeV!

● phase transition in QFT

○ the only experimentally accessible one!

● Big Bang evolution

○ QGP ➔ hadrons at t ~ 10 µs

● structure of compact stars



1980’s: the hunt is on ...

● how to access this physics experimentally? high-energy nuclear collisions!

○ since the 70’s nuclear physicists were already colliding heavy ions

■ Coulomb barrier, shock waves...

■ UNILAC (GSI), Super-Hilac and Bevalac (Berkeley), Synchrophasotron (Dubna)

○ it was realised that nuclear collisions could provide the conditions for QGP formation

○ but to reach Tc higher-energy accelerators were needed → ultrarelativistic AA collisions

● starting from the mid-80’s: high-energy beams of nuclei on fixed target 

○ at the Alternating Gradient Synchrotron (AGS) 

■ at Brookhaven National Laboratory (New York)

■ 𝑠𝑁𝑁 ~ 5 GeV

■ O (1986), Si (1987), Au (1993)

○ at the Super-Proton Synchrotron (SPS)

■ at CERN (Geneva)

■ 𝑠𝑁𝑁 ~ 17 GeV

■ O (1987), S (1987), Pb (1994)
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Nuclear beam experiments at the SPS (1986 – 2000)

14(from F Fleuret)

● a wide spectrum of observables (and technologies!)



Two historic predictions...

● QGP phase, if existed, would obviously be very short-lived, how to observe it?

○ is there a memory of the passage through the QGP phase?

○ are there “signatures” of the QGP that we can look for in the final state?

two major proposals made in the 80’s:

● strangeness enhancement (Johann Rafelski and Berndt Müller)
○ enhanced production of strange quarks in the QGP

→ enhancement of strange particles in the final state

● J/𝜓 suppression (Tetsuo Matsui and Helmut Satz)
○ colour field screened at short distances in QGP

→ suppression of production of tightly-bound quarkonium states
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Strangeness enhancement

● restoration of  symmetry -> increased production of s
○ mass of strange quark in QGP expected to go back to current value

■ mS ~ 150 MeV ~ Tc

→ copious production of ss pairs, mostly by gg fusion 

[J Rafelski: Phys. Rep. 88 (1982) 331]

[J Rafelski and B Müller: Phys.  Rev. Lett. 48 (1982) 1066]

● deconfinement → stronger effect for multi-strange
○ can be built recombining s quarks

→ strangeness enhancement increasing 

with strangeness content

→ expect larger for Ω(𝑠𝑠𝑠) than for Ξ(𝑠𝑠𝑑) than for Λ(𝑠𝑢𝑑)

[P Koch, B Müller and J Rafelski: Phys. Rep. 142 (1986) 167]
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Strangeness enhancement

● restoration of  symmetry -> increased production of s
○ mass of strange quark in QGP expected to go back to current value

■ mS ~ 150 MeV ~ Tc

→ copious production of 𝑠 ҧ𝑠 pairs, mostly by gg fusion 

[J Rafelski: Phys. Rep. 88 (1982) 331]

[J Rafelski and B Müller: Phys.  Rev. Lett. 48 (1982) 1066]

● deconfinement → stronger effect for multi-strange
○ can be built recombining s quarks

→ strangeness enhancement increasing 

with strangeness content

→ expect larger for Ω(𝑠𝑠𝑠) than for Ξ(𝑠𝑠𝑑) than for Λ(𝑠𝑢𝑑)

[P Koch, B Müller and J Rafelski: Phys. Rep. 142 (1986) 167]
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Strangeness enhancement at the SPS

● WA97/NA57
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● enhancement relative to p-Be, p-Pb

● increasing with |S|

● up to ~ x 20 for the Ω



Quarkonium suppression

● QGP signature proposed by Matsui and Satz, 1986

● quarkonium: 𝑐𝑐 states (charmonium), 𝑏𝑏 states (bottomonium)

● in the plasma phase the interaction potential is expected to be screened

○ analogous to Debye screening in electromagnetic plasma

○ beyond the Debye screening length 𝜆𝐷

19
[Digal, Petrecki, Satz  PRD 64(2001) 0940150]

𝜆𝐷 depends on T

→ states with radius > 𝜆𝐷 will not bind → suppressed

● J/𝜓,𝜓’, 𝜒𝑐→ 𝑐𝑐 states

● Υ→ 𝑏𝑏 states
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J/𝜓 suppression at the SPS

● measured/expected

● sets in at  ~ 2.3 GeV/fm3 (b ~ 8 fm)

● (on top of nuclear suppression)

○ due to nuclear absorption effects

○ measured in pA, light ion collisions

○ scaled to Pb-Pb (= 1 in the plot)

21

● NA50: “anomalous” suppression
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Two pillars of year 2000 announcement

● strangeness enhancement, J/𝜓 suppression



... meanwhile, in the US...

● 1978: start of construction of ISABELLE pp collider at Brookhaven (400 GeV)

● 1978: approval of transformation of SPS into 𝑝 ҧ𝑝 collider at CERN (630 GeV)

● 1981-82: problems in production of ISABELLE magnets

● 1983: discovery of W
±

(January) and Z0 (May) bosons at SPS collider
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... meanwhile, in the US...

● 1978: start of construction of ISABELLE pp collider at Brookhaven (400 GeV)

● 1978: approval of transformation of SPS into 𝑝 ҧ𝑝 collider at CERN (630 GeV)

● 1981-82: problems in production of ISABELLE magnets

● 1983: discovery of W
±

(January) and Z0 (May) bosons at SPS collider

● July 1983: construction of ISABELLE stopped, project cancelled

● July 1983: NSAC town meeting in Aurora: ISABELLE infrastructure to build a RHIC

○ Relativistic Heavy-Ion Collider

○ (that was quick, but already in 1981, at an ISABELLE workshop in Brookhaven...)
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... meanwhile, in the US...

● 1978: start of construction of ISABELLE pp collider at Brookhaven (400 GeV)

● 1978: approval of transformation of SPS into 𝑝 ҧ𝑝 collider at CERN (630 GeV)

● 1981-82: significant problems in production of ISABELLE magnets

● 1983: discovery of W
±

(January) and Z0 (May) bosons at SPS collider

● Jul 1983: construction of ISABELLE stopped, project cancelled

● Jul 1983: NSAC town meeting in Aurora: ISABELLE infrastructure to build a RHIC

○ Relativistic Heavy-Ion Collider

○ (that was quick, but already in 1981, at an ISABELLE workshop in Brookhaven...)

● 1986: start of heavy-ion collisions at CERN/SPS and Brookhaven/AGS 

● 1987: start of RHIC R&D

● 1991: start of construction

● 2000: first collisions
27



The RHIC experiments
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Azimuthal asymmetry
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… in the transverse momentum distribution                 

of produced particles

● why is it important?

● non-central collisions are asymmetric in azimuth 

azimuth = angle in the plane of the screen

→ transfer of this asymmetry to momentum space provides a measure of the strength of 

collective phenomena 

• large mean free path 

– particles stream out isotropically, no memory of the asymmetry 

– extreme: ideal gas  (infinite mean free path) 

• small mean free path

– larger density gradient -> larger pressure gradient -> larger momentum 

– extreme: ideal liquid (zero mean free path, hydrodynamic limit)



v2 at RHIC

● to quantify the asymmetry:

→ Fourier expansion of the angular distribution:

○ in the central detector region (ϑ ~ 90º) → v1 ~ 0 → asymmetry quantified with v2

○ v2: “elliptic flow coefficient”

● experimentally: low-pT v2 ~ as large as expected by hydrodynamics

○ mean free path ~ 0  

○ i.e. 𝜂/𝑠 at minimum

→ “almost-perfect liquid”

○ very efficient transfer of asymmetry                                                                                         

from coordinate to momentum space

→ “hard” equation of state

→ crucial support for QGP picture! 
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µ1+2v1cos(j -y1)+2v2 cos(2[j -y2 ])+...

STAR: Phys. Rev. Lett. 90 (2003) 32301



Nuclear modification factor

● participant vs collisions

• “soft”, large cross-section processes expected to scale like Npart

• “hard”, low cross-section processes expected to scale like Ncoll
31

R
AA
=

(dN / dp
T
)
AA

N
coll
(dN / dp

T
)
pp

● RAA: “nuclear modification factor”

○ quantifies deviation from Ncoll scaling



Nuclear modification factor at RHIC

● high-pT should follow Ncoll

○ if no nuclear/medium effects

● clearly violated for central collisions

● indication of energy loss of partons in the QGP!

○ not due to initial-state effects

○ (checked with pA, dA collisions)

● coherent with picture from azimuthal correlations

32

STAR: Phys.Rev.Lett. 89 (2002) 202301



The RHIC experiments

33

→ strongly-coupled QGP (sQGP)

much more in the “RHIC White Papers” (NPA 757, 2005)



... meanwhile, in Europe...

● 1984: ECFA meeting in Lausanne: pp machine in LEP tunnel
○ (n.b.: first collisions in LEP only in 1989!)

● 1986 start of heavy-ion collisions at CERN/SPS and Brookhaven/AGS
● capability to collide heavy ions in LHC quickly realised

○ mentioned at a workshop on Physics at Future Accelerators in La Thuile in 1987

● 1989 LHC workshop in Aachen
○ physics case for heavy-ion programme, start of organisation of experimental community

● 1992 Expression of Interest (Heavy-Ion Proto-Collaboration)
● 1993 Letter of Intent (A Large Ion Collider Experiment)

○ reusing the magnet of LEP experiment L3 at Interaction Point 2

● 1995 ALICE Technical Proposal
● 1997 ALICE approved by CERN Research Board
● 2000’s construction, installation, commissioning
● 2009 first collisions
● 2010 first Pb-Pb collisions!
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Nuclear collisions at the Large Hadron Collider

● ideal conditions: net baryon density = 0
○ close to conditions at Big Bang

○ theoretical calculations more reliable

● LHC is an excellent collider of nuclei!
○ excellent luminosity

○ even asymmetric collisions (p-Pb) in spite of 2-in-1 design!

● abundance of hard, “calibrated” probes
○ heavy flavour, jets, …

● very high multiplicity
○ key for precision studies of collectivity

● state-of-the-art detectors

● ALICE
○ dedicated experiment

○ ~1070 authors, ~ 170 institutions, 40 countries

● ATLAS, CMS, LHCb also participating in programme

35



The ALICE experiment

● two main parts
○ barrel (||<0.9), B = 0.5 Tesla

○ muon spectrometer, -4<<-2.5

● high-precision reconstruction
○ low material tracking

○ high-resolution vertexing

○ hadron and lepton ID

● trigger-less readout
○ for the main detectors

○ up to 50 kHz for Pb-Pb

● collisions systems (so far) : Pb-Pb, pp, p-Pb, Pb-p, Xe-Xe, OO, pO, Ne-Ne)

36
this July!



Identified particles

37
ALICE, arXiv:1910.07678



More and more species

● Resonances, hyperons,…

38

→ QGP hadronisation, radial expansion, freeze-out, …

K*0 Φ

ALICE, arXiv:1910.14419



A Large Ion Collider Experiment

Integrated yields

39

pp: /1000
Pb-Pb: /300

Tchem ≈ TC ≈ 156 MeV

● hadron chemistry in central Pb-Pb

○ ~at thermodynamic equilibrium

→ very different from pp!

→ strangeness enhancement!

○ looking at the fine print: some deviations

■ a few σ: K*, p/Λ/Ξ

→ key window on interactions in hadronic final state

● … even for nuclei, hypernuclei

○ in spite of very low binding energy!

○ substantial enhancement wrt pp

→ AA is a (hyper-)nuclei factory

○ for each additional nucleon:

arXiv:2211.04384

→ hadronisation very close to the phase transition  



Lattice QCD
● the rigorous way of performing calculations in the non-perturbative regime of QCD

● discretisation on a space-time lattice 

○ → ultraviolet (i.e. large-momentum scale) divergencies can be avoided
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[A Bazavov et al. PRD 90 094503 (2014)]

○ around critical temperature (TC): rapid change of

■ energy density 𝜀

■ entropy density s

■ pressure density p

○ due to activation of partonic degrees of freedom

○ at zero baryon density → smooth crossover

○ TC = (156.5 ± 1.5) MeV

○ 𝜀 ~ O(GeV/fm3)

[A Bazavov et al. Phys.Lett.B 795 (2019) 15]



A Large Ion Collider Experiment

Higher harmonics: a beautiful tool…

41

initial-state geometrical asymmetries           final state momentum asymmetries
○ dynamic response of QCD medium
○ interaction of hard probes with QCD medium

→ Fourier decomposition of azimuthal distribution 
○ “flow harmonics”
○ sensitive to transport parameters of medium



A Large Ion Collider Experiment

Entering precision era!

● High data quality enables quantitative extraction of medium parameters

○ e.g.: Bayesian parameter estimation from ALICE (mainly) data (Duke group)

→ extraction of temperature dependence of medium bulk and shear viscosity

42

QGP shear viscosity vs. temperature

Water

Helium

Quark-gluon

plasma
ALICE

ALICE

ALICE

ALICE+CMS

ALICE

CMS

→ QGP viscosity with ~20% precision
→ QGP ~10 times less viscous than any other form of matter

ALICE, Nat. Phys. 15 (2019) 

1113



a gold mine!

Heavy flavour!

43

● controlled probe
○ mass

○ colour charge

○ pQCD

● generated in initial parton scattering

● conserved throughout evolution

● large mass → “Brownian” probe

● powerful probe of hadronisation

experimentally:

● strongly coupled to medium 

● clear hierarchy at low pT
ALICE: JHEP01 (2022) 174



Strongly involved in the flow

and v3!

44ALICE: Phys. Lett. B 813 (2021) 136054

v2



State-of-the-art...

● ddd

45

● substantial model constraints...

● 50% uncertainty on diffusion coefficient

○ it starts to be a measurement!

ALICE: JHEP01 (2022) 174



A new regime for J/𝜓 production!

● a remarkable change of behaviour from SPS/RHIC!

● in both the centrality and the pT dependence

● evidence for production by recombination of exogamous 𝑐 ҧ𝑐 pairs!

46



Charm quarks themselves flow

47

ALICE: JHEP 10 (2020) 141 CMS: PAS-HIN-21-008



Beauty is quenched, too...

● less so than charm...

48



... and it flows, too...

● less so than charm...

● similar trend for v3:

49



Υ states seem to follow a sequential suppression pattern

50

CMS: PLB 790 (2019) 270 CMS: PAS-HIN-21-007



... but the Υ doesn’t seem to flow much...

51

CMS: PLB 819 (2021) 136385 

● could it be that b quarks don’t flow?
○ and B get their flow from light quarks?



... but the Υ doesn’t seem to flow much...
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CMS: PLB 819 (2021) 136385 

● could it be that b quarks don’t flow?
○ and B get their flow from light quarks?

● but should Υ flow reflect b quark flow?
○ recombination component should be small



... but the Υ doesn’t seem to flow much...
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CMS: PLB 819 (2021) 136385 

● could it be that b quarks don’t flow?
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● shouldn’t Υ suppression feel the geometry?
○ shouldn’t that asymmetry be there, at least?



... but the Υ doesn’t seem to flow much...
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CMS: PLB 819 (2021) 136385 

● could it be that b quarks don’t flow?
○ and B get their flow from light quarks?

● but should Υ flow reflect b quark flow?
○ recombination component should be small

● shouldn’t Υ suppression feel the geometry?
○ shouldn’t that asymmetry be there, at least?

● perhaps two populations?
○ e.g.: colour octet and colour singlet?

○ colour octet disappears?

○ colour singlet goes through ~ isotropically?

● ...



Small systems: a new frontier

● long-range ridge on near side in high-multiplicity pp collisions at the LHC!

● very similar structure as in Pb-Pb collisions

○ where it is connected with v2

55

CMS: JHEP 1009:091,2010 ALICE: Phys Lett B 719 (2013) 29



Near- and away-side ridge in p-Pb 

● evidence for collective behaviour in high-multiplicity p-Pb, 
○ e.g. symmetric double-ridge when subtracting low from high mult’y p-Pb

56

–

0-20% 60-100%

=

ALICE: Phys Lett B 719 (2013) 29



● clear mass ordering at high multiplicity

○ same as in Pb-Pb

● consistent with common velocity field

→ consistent with hydrodynamic expansion!

v2 for identified particles in p-Pb
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Strangeness enhancement in pp!

● one of the hallmarks of QGP
● predicted in 1982

J Rafelski & B Müller, PRL 48 (1982) 1066 

→ observed at SPS in the 90’s
WA97, NA57, NA49 

● now observed in high-mult pp!
○ not reproduced by models

● a precursor phenomenon?
● QGP in high-mult pp???
→ new directions for research! 

○ study effects turn-on, evolution
○ new weapon: pp generators!
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But no sign of quenching yet!

● e.g.: RpPb for 𝜋0
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[ALICE: PLB 827 (2022) 136943]



Light ions in the LHC!

OO, pO and Ne-Ne collisions in the LHC in July

● significant quenching observed!

60

● beyond nPDF suppression

→ stay tuned!



A Large Ion Collider Experiment

ALICE results from LHC Run 1, 2: full review

61
arXiv:2211.04384



The new frontier: ALICE 3!

a next-generation heavy-ion experiment at the LHC

62

● compact, “all-silicon” tracker

● wide rapidity acceptance (8 units)

● high-resolution vertex detector 

○ as close as possible to beams!

● superconducting magnet system

● hadron, muon, electron identification

● forward conversion tracker
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IRIS: inside the beam pipe
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Beampipe not shown

IRIS: inside the beam pipe
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Beampipe not shown

IRIS: inside the beam pipe
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Layer 0
Layer 1 Layer 2

Minimum aperture at injection: 16mm radius

Closes to 5mm radius during operation

IRIS: aperture



A Large Ion Collider Experiment

Physics potential

• some personal favourites…
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→ b mass just at the right spot?

○ to see equilibration “in action”...?

→ need high-precision b down to pT=0

→ (and watch the hadrochemistry!)

Low-pT beauty!

● beauty not fully equilibrated?
○ less suppression than for charm

○ less flow than for charm 

○ SHM seems to fail

● relaxation ~ 3 times slower than charm 

○ 𝜏𝑄 =
𝑚𝑄

𝑇
𝐷𝑠 (with 𝑚𝑏~3𝑚𝑐)

○ of course this does not imply that b 

cannot fully equilibrate...
■ given enough volume/time...

○ ....but experimentally it looks like it 

doesn’t... 

68



Multi-charm: the final frontier?

69

Statistical Hadronisation Model

A Andronic et al.: JHEP 07 (2021) 035

P Skands & C: arXiv:2205.15681

𝐽/𝜓

𝐷+
Ξ𝑐𝑐
++

𝐷+

● huge enhancements predicted 

○ up to 103 wrt pQCD for the Ω𝑐𝑐𝑐!

● negligible production in Single-Parton Scattering
○ unlike 𝐽/𝜓

● only “exogamous” production

○ unlike 𝐽/𝜓

● ultimate sensitivity to degree of c thermalisation!

F Becattini: Phys.Rev.Lett. 95 (2005) 022301

V Minissale et al.: EPJ C (2024) 84:228



𝐷ഥ𝐷 correlations

● ~ Rutherford experiment on QGP!

● constrain energy loss and angular decorrelation simultaneously

● collisional vs radiative eloss vs momentum scale

● full isotropisation at low pT?

● e.g.: ALICE 3 LoI
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Charmed hypernuclei?

● nuclei containing a charm baryon

○ sometimes called supernuclei

● e.g.: c-deuteron (Λ𝑐
+𝑛), c-triton (Λ𝑐

+𝑛𝑛)

● first suggested in the 70’s

○ C B Dover and S H Kahana, PRL 39 (1977) 1506

● existence/stability debated ever since

● at SHM abundances → expected to come into view at LHC

● if full equilibration confirmed both for c and for nuclear states...

→ discover or exclude existence!

● + direct study of Λ𝑐
+-N potential via femtoscopy?
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An old dream: thermal charm?

● 𝛾𝑐 ~ 30 → thermal component only ~ 3%

● but that’s for central Pb-Pb...

● initial production: 𝑌𝑖𝑛(𝑐 ҧ𝑐) ∝ 𝐴4/3

● thermal production: 𝑌𝑡ℎ(𝑐 ҧ𝑐) ∝ 𝐴

● 𝛾𝑐 ∝
𝑌𝑖𝑛
𝑌𝑡ℎ

∝ 𝐴1/3

● e.g. for central Ar-Ar (or ~ 60% Pb-Pb) 𝛾𝑐 ~ 15

→ thermal component already 6%

○ + centrality / A dependence different from initial component

→ can it be separated from other centrality-dependent effects with very-large stats?

● btw: already in our minds at time of ALICE TP 

○ (but theory predictions were overestimated...) 72

E V Shuryak: Yadernaya Fizika 28 (1978) 403



An old dream: beauty shock waves?

● low momentum b quarks are slow! (e.g.: at 10 GeV 𝛽 ~ 0.9)

→ angle of shock wave emitted by propagating b quark should depend on p

73

● taking ഥ𝑐𝑠 ~ 1/ 3 ... 1/2

● b subsonic for 𝑝 < ~ 3 GeV/c

● p-dependent wake in multi-GeV range?

○ ~ 40 º at 5 GeV, ~ 55º at 10 GeV!

𝜃 (𝑟𝑎𝑑)

𝑝 GeV/𝑐

F Antinori, E V Shuryak: J.Phys. G31 (2005) L19



A Large Ion Collider Experiment

Physics potential (more examples)
• heavy flavours, quarkonia

– multi-heavy flavoured hadrons (Ξcc, Ωcc, Ωccc)

– D D correlations

– B mesons at low pT

– c , X, Y, Z states and exotic hadrons

• low-mass dielectrons
– chiral symmetry restoration

– thermal continuum (virtual photons)

• fluctuations of conserved charges

– over wide rapidity range

• ultra-soft photons

– down to MeV scale with dedicated forward spectrometer

• nuclei, hyper-nuclei, search for super-nuclei (with c baryons)

• BSM searches

– dark photons 

– axion-like particles

– …
74

Letter of Intent: https://cds.cern.ch/record/2803563

https://cds.cern.ch/record/2803563


A Large Ion Collider Experiment

Axion-Like Particle (ALP) searches

75



A Large Ion Collider Experiment

Conclusions

• we have come a long way!

– from the realisation of the possible existence of deconfined matter in the 70’s

– to the first explorations of collective effects (AGS, SPS S beams)

– through the discovery of deconfinement (SPS Pb beams)

– through the evidence for strongly-coupled QGP (RHIC)

– to the LHC harvest

• parton-dependent energy loss

• direct observation of QGP hadronisation

• discovery of collectivity in small systems 

• quantitative access to QGP parameters

• today:

– the plans of the community are being drawn for the next two decades

– we are entering the next phase:

→ systematic exploration of the emergent properties of QCD condensed matter
76



A Large Ion Collider Experiment

Conclusions

• we have come a long way!

– from the realisation of the possible existence of deconfined matter in the 70’s

– to the first explorations of collective effects (AGS, SPS S beams)

– through the discovery of deconfinement (SPS Pb beams)

– through the evidence for strongly-coupled QGP (RHIC)

– to the LHC harvest

• parton-dependent energy loss

• direct observation of QGP hadronisation

• discovery of collectivity in small systems 

• quantitative access to QGP parameters

• today:

– the plans of the community are being drawn for the next two decades

– we are entering the next phase:

→ systematic exploration of the emergent properties of QCD condensed matter
77


	Slide 1: 50 years of Quark-Gluon Plasma: Past, Present and Future
	Slide 2: A bit of history: discovery of subnuclear particles
	Slide 3: Statistical Bootstrap and Hagedorn Temperature
	Slide 4: Spectrum of hadron masses
	Slide 5: Hagedorn temperature: a limiting value?
	Slide 6: ... but Quarks enter the scene...
	Slide 7: 1974: Lee and Wick: a key precursor!
	Slide 8: 1975, Cabibbo and Parisi: “quark liberation” at high T
	Slide 9: 1975, Collins and Perry: “quark soup” in neutron stars?
	Slide 10: 1978, the name is coined
	Slide 11: Lattice QCD
	Slide 12: The QCD (de-)confinement phase transition
	Slide 13: 1980’s: the hunt is on ...
	Slide 14: Nuclear beam experiments at the SPS (1986 – 2000)
	Slide 15: Two historic predictions...
	Slide 16: Strangeness enhancement
	Slide 17: Strangeness enhancement
	Slide 18: Strangeness enhancement at the SPS
	Slide 19: Quarkonium suppression
	Slide 20: Quarkonium suppression
	Slide 21: J/psi suppression at the SPS
	Slide 22: Two pillars of year 2000 announcement
	Slide 23: ... meanwhile, in the US...
	Slide 24: ... meanwhile, in the US...
	Slide 25: ... meanwhile, in the US...
	Slide 26: ... meanwhile, in the US...
	Slide 27: ... meanwhile, in the US...
	Slide 28: The RHIC experiments
	Slide 29: Azimuthal asymmetry
	Slide 30: v2 at RHIC
	Slide 31: Nuclear modification factor
	Slide 32: Nuclear modification factor at RHIC
	Slide 33: The RHIC experiments
	Slide 34: ... meanwhile, in Europe...
	Slide 35: Nuclear collisions at the Large Hadron Collider
	Slide 36: The ALICE experiment
	Slide 37: Identified particles
	Slide 38: More and more species
	Slide 39: Integrated yields
	Slide 40: Lattice QCD
	Slide 41: Higher harmonics: a beautiful tool…
	Slide 42: Entering precision era!
	Slide 43: Heavy flavour!
	Slide 44: Strongly involved in the flow
	Slide 45: State-of-the-art...
	Slide 46: A new regime for J/psi production!
	Slide 47: Charm quarks themselves flow
	Slide 48: Beauty is quenched, too...
	Slide 49: ... and it flows, too...
	Slide 50: cap upsilon states seem to follow a sequential suppression pattern
	Slide 51: ... but the cap upsilon doesn’t seem to flow much...
	Slide 52: ... but the cap upsilon doesn’t seem to flow much...
	Slide 53: ... but the cap upsilon doesn’t seem to flow much...
	Slide 54: ... but the cap upsilon doesn’t seem to flow much...
	Slide 55: Small systems: a new frontier
	Slide 56: Near- and away-side ridge in p-Pb 
	Slide 57: v2 for identified particles in p-Pb
	Slide 58: Strangeness enhancement in pp!
	Slide 59: But no sign of quenching yet!
	Slide 60: Light ions in the LHC!
	Slide 61: ALICE results from LHC Run 1, 2: full review
	Slide 62: The new frontier: ALICE 3!
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67: Physics potential
	Slide 68: Low-pT beauty!
	Slide 69: Multi-charm: the final frontier?
	Slide 70: cap D cap D bar  correlations
	Slide 71: Charmed hypernuclei?
	Slide 72: An old dream: thermal charm?
	Slide 73: An old dream: beauty shock waves?
	Slide 74: Physics potential (more examples)
	Slide 75: Axion-Like Particle (ALP) searches
	Slide 76: Conclusions
	Slide 77: Conclusions

